如圖幾何體中,四邊形ABCD為矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2,  EF∥AB,G為FC的中點,M為線段CD上的一點,且CM =2.
(1)證明:平面BGM⊥平面BFC;
(2)求三棱錐F-BMC的體積V.

詳見解析

解析試題分析:(1)連接,由已知可證,的中點,,所以可證,即,可證面面垂直;
(2)根據公式,所以中點時求的面積,根據第一問所證,可知,代入面積公式與體積公式,即可求得體積,此題屬于中檔習題,屬于文科考察中點.
試題解析:(1) 連接
的中點
,,
,為矩形
,又,為平行四邊形
,為正三角形 ,
,     6分
(2),
因為,,所以,所以        12分

考點:1.面面垂直的判定;2.幾何體的體積計算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

將邊長為2,銳角為的菱形沿較短對角線折成二面角,點分別為的中點,給出下列四個命題:
;②是異面直線的公垂線;③當二面角是直二面角時,間的距離為;④垂直于截面.
其中正確的是              (將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,,平面,的中點,,
(Ⅰ)求四棱錐的體積;
(Ⅱ)若的中點,求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知一四棱錐P-ABCD的底面是邊長為1的正方形,且側棱PC⊥底面ABCD,且PC=2,E是側棱PC上的動點
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中-A BC中,AB  AC, AB=AC=2,=4,點D是BC的中點.
(1)求異面直線所成角的余弦值;
(2)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知正三棱柱ABC-A1B1C1的底面邊長為8,側棱長為6,D為AC中點。

(1)求證:直線AB1∥平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1中,點A1在平面ABC內的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)證明:AC1⊥A1B;
(2)設直線AA1與平面BCC1B1的距離為,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)請在線段CE上找到一點F,使得直線BF∥平面ACD,并證明;
(2)求平面BCE與平面ACD所成銳二面角的大小;

查看答案和解析>>

同步練習冊答案