(本題滿分12分)本題共有2個小題,第1小題滿分5分,第2小題滿分7分.
已知拋物線,F(xiàn)是焦點,直線l是經(jīng)過點F的任意直線.
(1)若直線l與拋物線交于兩點A、B,且(O是坐標原點,M是垂足),求動點M的軌跡方程;
(2)若C、D兩點在拋物線上,且滿足,求證直線CD必過定點,并求出定點的坐標.
所求動點M的軌跡方程是().
直線CD的方程可化為. 直線CD恒過定點,且定點坐標為(2,0).
【解析】(本題滿分12分)本題共有2個小題,第1小題滿分5分,第2小題滿分7分.
解 (1) 設動點M的坐標為. …………………1分
∵拋物線的焦點是,直線l恒過點F,且與拋物線交于兩點A、B,
又,
∴. …………………3分
∴,化簡,得. …………………5分
又當M與原點重合時,直線l與x軸重合,故.
∴所求動點M的軌跡方程是().
(2) 設點C、D的坐標為、. …………………………6分
∵C、D在拋物線上,
∴,,即,.
又,
∴. ………8分
∵點C、D的坐標為、,
∴直線CD的一個法向量是,可得直線CD的方程為:
,化簡,得
,進一步用,有
.
又拋物線上任兩點的縱坐標都不相等,即.
∴直線CD的方程可化為. ………………………10分
∴直線CD恒過定點,且定點坐標為(2,0). ………………………12分
科目:高中數(shù)學 來源:2011屆陜西省師大附中、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題
.三、解答題:本大題共6小題,共75分. 解答應寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆湖北省高二上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)某校從高二年級學生中隨機抽取60名學生,將其期中考試的政治成績(均為整數(shù))分成六段: ,,…, 后得到如下頻率分布直方圖.
(Ⅰ)求分數(shù)在內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在80分以上(含80分)的學生中抽取一個容量為6的樣本,將該樣 本看成一個總體,從中任意選取2人, 求其中恰有1人的分數(shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆吉林長春外國語學校高一下學期第二次月考數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
本公司計劃2012年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲、乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘,規(guī)定甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年陜西省、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題
.三、解答題:本大題共6小題,共75分. 解答應寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年上海市高二第一學期期末考試數(shù)學試卷 題型:解答題
(本小題滿分12分)
如圖,長方體中, AD=2,AB=AD=4,,點E是AB的中點,點F是的中點。
(1)求證:;
(2)求異面直線與所成的角的大;
(本題滿分12分)
已知,且以下命題都為真命題:
命題 實系數(shù)一元二次方程的兩根都是虛數(shù);
命題 存在復數(shù)同時滿足且.
求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com