函數(shù)y=Asin(ωx+φ)(ω>0,|ϕ|<
π
2
,x∈R)的部分圖象如圖所示,則函數(shù)表達(dá)式為(  )
A.y=-4sin(
π
8
x+
π
4
B.y=4sin(
π
8
x-
π
4
C.y=-4sin(
π
8
x-
π
4
D.y=4sin(
π
8
x+
π
4

由圖象得A=±4,
T
2
=8,∴T=16,∵ω>0,∴ω=
T
=
π
8
,
①若A>0時(shí),y=4sin(
π
8
x+φ),
當(dāng)x=6時(shí),
π
8
x+
φ=2Kπ,φ=2kπ-
4
,k∈Z;
又|φ|<
π
2
,∴φ∈∅;
②若A<0時(shí),y=-4sin(
π
8
x+φ),
當(dāng)x=-2時(shí),
π
8
x+
φ=2kπ,φ=2kπ+
π
4
,k∈z;
又|φ|<
π
2
,∴φ=
π
4

綜合①②該函數(shù)解析式為y=-4sin(
π
8
x+
π
4
).
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知電流I與時(shí)間t的關(guān)系式為I=Asin(ωt+φ).
(Ⅰ)右圖是I=Asin(ωt+φ)(A>0,ω>0,|φ|<
π
2

在一個(gè)周期內(nèi)的圖象,根據(jù)圖中數(shù)據(jù)求I=Asin(ωt+φ)的解析式;
(Ⅱ)如果t在任意一段
1
150
秒的時(shí)間內(nèi),電流I=Asin(ωt+φ)都能取得最大值和最小值,那么ω的最小正整數(shù)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為( 。
A.y=2sin(2x+
3
B.y=2sin(2x+
π
3
C.y=2sin(
x
2
-
π
3
D.y=2sin(2x-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-
π
6
,
π
2
]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,-
π
2
<φ<
π
2
),其部分圖象如圖所示.
(I)求f(x)的解析式;
(II)求函數(shù)g(x)=f(x+
π
4
)•f(x-
π
4
)
在區(qū)間[0,
π
2
]
上的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

要得到函數(shù)y=cos(3x-
π
6
)
的圖象,只需將y=sin3x的圖象( 。
A.向右平移
π
3
B.向左平移
π
3
C.向右平移
π
9
D.向左平移
π
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,如果x1,x2∈(-
π
6
π
3
)
,且f(x1)=f(x2),則f(x1+x2)=( 。
A.
1
2
B.
2
2
C.
3
2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

要得到函數(shù)y=sin2x的圖象,可以把函數(shù)y=
2
2
(sin2x-cos2x)的圖象( 。
A.向左平移
π
8
個(gè)單位
B.向右平移
π
8
個(gè)單位
C.向左平移
π
4
個(gè)單位
D.向右平移
π
4
個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案