14.雙曲線9x2-4y2=-36的漸近線方程是y=±$\frac{3}{2}$x.

分析 求出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合雙曲線漸近線的方程進(jìn)行求解即可.

解答 解:雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1,
則雙曲線的漸近線方程為y=±$\frac{3}{2}$x,
故答案為:y=±$\frac{3}{2}$x

點(diǎn)評 本題主要考查雙曲線漸近線的求解,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,上頂點(diǎn)為M,且△MF1F2為面積是1的等腰直角三角形.
(1)求橢圓E的方程;
(2)若直線l:y=-x+m與橢圓E交于A,B兩點(diǎn),以AB為直徑的圓與y軸相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,焦距等于短軸長,設(shè)不過原點(diǎn)的直線l與橢圓C交于M、N兩點(diǎn),滿足直線OM、MN、ON的斜率依次成等比數(shù)列.
(1)求橢圓C的離心率;
(2)若橢圓C過點(diǎn)(2,0),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知點(diǎn)P是正方形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,PA=AB=2,點(diǎn)E、F、H分別是線段PB、AC、PA的中點(diǎn).
(1)求證:EF∥平面APD;
(2)求異面直線HF與CD的夾角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,角A、B、C的對邊a、b、c成等差數(shù)列,且A-C=90°,則cosB=( 。
A.$\frac{3}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程2sin$\frac{2}{3}$x=1的解集是{x|x=3kπ+$\frac{π}{4}$或x=3kπ+$\frac{5π}{4}$,k∈Z }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sin($\frac{3π}{2}$-x)=$\frac{5}{13}$,則cos2x=( 。
A.-$\frac{119}{169}$B.$\frac{119}{169}$C.-$\frac{5}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知{an}滿足a1=1,a2 =-13,an+2-2an+1+an=2n-6,則當(dāng)an取最小值時(shí)n的值為( 。
A.8或9B.9C.8D.7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.曲線C上任一點(diǎn)P與兩點(diǎn)F1(-2,0),F(xiàn)2(2,0)連線的斜率乘積為-$\frac{1}{2}$.
(1)求曲線C的方程;
(2)過點(diǎn)M(1,1)的直線與曲線C交于A,B,且點(diǎn)M恰好為線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案