已知,邊AB上一點(diǎn)P1,這里P1異于A、B.由P1引邊OB的垂線P1Q1,Q1是垂足,再由Q1引邊OA的垂線Q1R1,R1是垂足.又由R1引邊AB的垂線R1P2,P2是垂足.同樣的操作連續(xù)進(jìn)行,得到點(diǎn) Pn、Qn、Rn(n∈N*).設(shè) <tn<1),如圖.
(1)求的值;
(2)某同學(xué)對(duì)上述已知條件的研究發(fā)現(xiàn)如下結(jié)論:,問(wèn)該同學(xué)這個(gè)結(jié)論是否正確?并說(shuō)明理由;
(3)用t1和n表示tn

【答案】分析:(1)欲求的值,先求其平方.利用三角形OAB中的邊角條件即可求得 ,從而得出
(2)該同學(xué)的結(jié)論正確.由(1)與已知,得三角形OAB的三邊長(zhǎng),由余弦定理結(jié)合向量條件即可證得.
(3)結(jié)合圖形,可得 變形為:得到{tn-}構(gòu)成一個(gè)等比數(shù)列,公比為-,利用等比數(shù)列的通項(xiàng)公式即可表示出tn
解答:解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183030343194771/SYS201310241830303431947026_DA/7.png">-----(1分)
則 ;所以,--------------(4分)
(2)該同學(xué)的結(jié)論正確.----------------------------(5分)
由(1)與已知,得,
由余弦定理  -----------------(6分)
又∵,則
,所以,---------(8分)
(3)結(jié)合圖形,可得 ---------------------(14分)
------------------------(16分)
∴{tn-}構(gòu)成一個(gè)等比數(shù)列,公比為-,
--------------(18分)
點(diǎn)評(píng):本小題主要考查向量模、解三角形的應(yīng)用、數(shù)列的通項(xiàng)公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3),點(diǎn)P的橫坐標(biāo)為14,且
OP
PB
,點(diǎn)Q是邊AB上一點(diǎn),且
OQ
AP
=0

(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求
RO
•(
RA
+
RB
)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC,且AC=BC,若P0是邊AB上一定點(diǎn),若對(duì)于邊AB上任一點(diǎn)P,恒有
PB
PC
P0B
P0C
則 ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0103 期末題 題型:解答題

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3), 點(diǎn)P的橫坐標(biāo)為14,且,點(diǎn)Q是邊AB上一點(diǎn),且
(Ⅰ)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(Ⅱ)求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3),點(diǎn)P的橫坐標(biāo)為14,且
OP
PB
,點(diǎn)Q是邊AB上一點(diǎn),且
OQ
AP
=0

(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求
RO
•(
RA
+
RB
)
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省蘇州市常熟市高一(上)期末數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,-3),點(diǎn)P的橫坐標(biāo)為14,且,點(diǎn)Q是邊AB上一點(diǎn),且
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案