精英家教網 > 高中數學 > 題目詳情
如圖,在四棱錐S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB
,E是SA的中點.
(1)求證:平面BED⊥平面SAB;
(2)求直線SA與平面BED所成角的大。
分析:(1)證明平面BED⊥平面SAB,利用面面垂直的判定定理,證明DE⊥平面SAB即可;
(2)作AF⊥BE,垂足為F,可得∠AEF是直線SA與平面BED所成的角,在Rt△AFE中,即可求得結論.
解答:(1)證明:∵SD⊥平面ABCD,SD?平面SAD
∴平面SAD⊥平面ABCD,
∵AB⊥AD,平面SAD∩平面ABCD=AD
∴AB⊥平面SAD,
∵DE?平面SAD
∴DE⊥AB.…(3分)
∵SD=AD,E是SA的中點,∴DE⊥SA,
∵AB∩SA=A,∴DE⊥平面SAB
∴平面BED⊥平面SAB.…(6分)

(2)解:
作AF⊥BE,垂足為F.
由(1),平面BED⊥平面SAB,則AF⊥平面BED,所以∠AEF是直線SA與平面BED所成的角.…(8分)
設AD=2a,則AB=
2
a,SA=2
2
a,AE=
2
a,△ABE是等腰直角三角形,則AF=a.
在Rt△AFE中,sin∠AEF=
AF
AE
=
2
2
,∴∠AEF=45°
故直線SA與平面BED所成角的大小45°.…(12分)
點評:本題考查面面垂直,考查線面角,解題的關鍵是掌握面面垂直的判定,正確得出線面角,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在四棱錐S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E為BS的中點,CE=
2
,AS=
3
,求:
(Ⅰ)點A到平面BCS的距離;
(Ⅱ)二面角E-CD-A的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側棱SD⊥底面ABCD,E、F分別是AB、SC的中點
(1)求證:EF∥平面SAD
(2)設SD=2CD,求二面角A-EF-D的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E為SD的中點.
(1)若F為底面BC邊上的一點,且BF=
1
6
BC
,求證:EF∥平面SAB;
(2)底面BC邊上是否存在一點G,使得二面角S-DG-A的正切值為
2
?若存在,求出G點位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側棱SD⊥底面ABCD,E,F(xiàn)分別為AB,SC的中點.
(1)證明EF∥平面SAD;
(2)設SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD.底面ABCD為矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求證:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步練習冊答案