13.平行四邊形ABCD中,AB=3,AD=2,∠BAD=120°,P是平行四邊形ABCD內(nèi)一點,且AP=1,若$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,則3x+2y的最大值為2.

分析 根據(jù)$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,得出${\overrightarrow{AP}}^{2}$=1,利用基本不等式得出3x+2y的最大值.

解答 解:∵$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{AD}$,
∴${\overrightarrow{AP}}^{2}$=${(x\overrightarrow{AB}+y\overrightarrow{AD})}^{2}$=9x2+4y2+2xy×3×2×(-$\frac{1}{2}$)
=(3x+2y)2-3•3x•2y≥(3x+2y)2-$\frac{3}{4}$×(3x+2y)2
=$\frac{1}{4}$×(3x+2y)2;
又${|\overrightarrow{AP}|}^{2}$=1,
即$\frac{1}{4}$×(3x+2y)2≤1,
所以3x+2y≤2,當且僅當3x=2y,
即x=$\frac{1}{3}$,y=$\frac{1}{2}$時,
3x+2y取得最大值2.
故答案為:2.

點評 本題考查了平面向量的數(shù)量積與模長的應(yīng)用問題,也考查了基本不等式的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD1所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.將函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{3}$個單位,所得函數(shù)的解析式為( 。
A.$y=sin({2x+\frac{5π}{6}})$B.y=-cos2xC.y=cos2xD.$y=sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)y=ln|x|-x2的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=ex-$\frac{a}{x}$,a,f(x)為實數(shù).
(1)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上存在極值點,且極值大于ln4+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{m}$-y2=1的一個焦點與拋物線y2=8x焦點相同,則此雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{5}}{5}$C.2D.$\frac{2\sqrt{15}}{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:x2=2py(p>0),圓O:x2+y2=1.
(1)若拋物線C的焦點F在圓上,且A為 C和圓 O的一個交點,求|AF|;
(2)若直線l與拋物線C和圓O分別相切于點M,N,求|MN|的最小值及相應(yīng)p的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若實數(shù)x,y滿足$\left\{{\begin{array}{l}{x-2y+1≤0}\\{2x-y≥0}\\{x≤1}\end{array}}\right.$,則由點P(2x-y,x+y)形成的區(qū)域的面積為1.

查看答案和解析>>

同步練習冊答案