已知奇函數(shù)f(x)在區(qū)間(-∞,0)內(nèi)單調(diào)遞增,且f(-2)=0,則不等式f(x)≤0的解集為( 。
分析:由題意可知,f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,且f(2)=0,作出其圖象,從而可得答案.
解答:解:∵奇函數(shù)f(x)在區(qū)間(-∞,0)內(nèi)單調(diào)遞增,且f(-2)=0,
∴f(x)在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,且f(2)=0,作出其圖象如下,
∴不等式f(x)≤0的解集為:{x|x≤-2或0<x≤2}.
故選B.
點(diǎn)評:本題考查函數(shù)單調(diào)性的性質(zhì),著重考查“奇函數(shù)在對稱區(qū)間上有相同的單調(diào)性”的性質(zhì)及其應(yīng)用,考查數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知奇函數(shù)f(x)在x≥0時的圖象是如圖所示的拋物線的一部分,
(1)求函數(shù)f(x)的表達(dá)式,
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在[-1,0]上單調(diào)遞減,又α,β為銳角三角形的兩內(nèi)角,則有( 。
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞增,且f(2x-1)+f(
1
2
)<0,則x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1};
④在極坐標(biāo)系中,圓ρ=-4cosθ的圓心的直角坐標(biāo)是(-2,0).
其中正確的是
②,④
②,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在R上單調(diào)遞減,且f(3-a)+f(1-a)<0,則a的取值范圍是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案