【題目】如圖,在空間幾何體A﹣BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是邊長為2的等邊三角形,F(xiàn)為AC的中點. (Ⅰ)求證:BF∥平面ADE;
(Ⅱ)若AC=4,求證:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求幾何體C﹣BDF的體積.
【答案】證明:(Ⅰ)取DA的中點G連結(jié)FG,GE,
∵F為AC的中點,∴ ,
又∵DC∥BE,CD=2BE,∴EB∥GF,且EB=GF,
∴四邊形BFGE為平行四邊形,∴BF∥EG,
∵EG平面ADE,BF平面ADE,
∴BF∥平面ADE
解:(Ⅱ)取DE的中點H,連AH,CH,
∵△ADE為等邊三角形,∴AH⊥DE,且 ,
在△DHC中,DH=1,DC=4,HDC=60°,∴ ,
∴AC2=AH2+HC2 , 即AH⊥HC,∵DE∩HC=H,
∴AH⊥平面BCDE,∵AH平面ADE,
∴平面ADE⊥BCDE…(8分)
(Ⅲ) = =2,
∵F是AC中點,
∴幾何體C﹣BDF的體積
【解析】(Ⅰ)取DA的中點G連結(jié)FG,GE,推導出四邊形BFGE為平行四邊形,從而BF∥EG,由此能證明BF∥平面ADE.(Ⅱ)取DE的中點H,連AH,CH,推導出AH⊥DE,AH⊥HC,從而AH⊥平面BCDE,由此能證明平面ADE⊥BCDE.(Ⅲ)幾何體C﹣BDF的體積 ,由此能求出結(jié)果.
【考點精析】掌握平面與平面垂直的判定是解答本題的根本,需要知道一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,C= .
(Ⅰ)若△ABC的面積等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)= sin(2x﹣ )+1的圖象向左平移 個單位長度,再向下平移1個單位長度后,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有的性質(zhì)(填入所有正確的序號) ①最大值為 ,圖象關(guān)于直線x= 對稱;②在(﹣ ,0)上單調(diào)遞增,且為偶函數(shù);③最小正周期為π;④圖象關(guān)于點( ,0)對稱,⑤在(0, )上單調(diào)遞增,且為奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移 個單位后,再將圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的最大值及取得最大值時的x的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把函數(shù)y=sinx(x∈R)的圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),再把所得圖象向左平行移動 個單位長度,得到的圖象所表示的函數(shù)是( )
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面,底面是直角梯形,,
,點在上,且.
(1)已知點在,且,求證:平面平面;
(2)若的面積是梯形面積為,求點E到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com