在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)設(shè),求的最小值.
【答案】分析:(Ⅰ)利用正弦定理化簡(jiǎn)已知的等式,整理后利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),再利用誘導(dǎo)公式變形,根據(jù)sinA不為0,求出cosB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(Ⅱ)由兩向量的坐標(biāo),利用平面向量的數(shù)量積運(yùn)算法則計(jì)算所求的式子,根據(jù)B的度數(shù),得出A的范圍,利用正弦函數(shù)的單調(diào)性即可求出所求式子的最小值.
解答:解:(I)由正弦定理===2R,有a=2RsinA,b=2RsinB,c=2RsinC,
代入(2a-c)cosB=bcosC,得(2sinA-sinC)cosB=sinBcosC,
即2sinAcosB=sinBcosC+sinCcosB=sin(B+C),
∵A+B+C=π,∴2sinAcosB=sinA,
∵0<A<π,∴sinA≠0,
∴cosB=,
∵0<B<π,∴B=
(II)∵=(sinA,1),=(-1,1),
=-sinA+1,
由B=得:A∈(0,),
則當(dāng)A=時(shí),取得最小值0.
點(diǎn)評(píng):此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,平面向量的數(shù)量積運(yùn)算,誘導(dǎo)公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案