(本題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,曲線的參數(shù)方程是是參數(shù)).
(1)寫出曲線的直角坐標(biāo)方程和曲線的普通方程;
(2)求的取值范圍,使得,沒有公共點.

(1)曲線的直角坐標(biāo)方程是,曲線的普通方程是;
(2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

以坐標(biāo)原點O為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:,曲線C2的參數(shù)方程為:,點N的極坐標(biāo)為
(Ⅰ)若M是曲線C1上的動點,求M到定點N的距離的最小值;
(Ⅱ)若曲線C1曲線C2有有兩個不同交點,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(考生注意:只能從A,B,C中選擇一題作答,并將答案填寫在相應(yīng)字母后的橫線上,若多做,則按所做的第一題評閱給分.)
A.選修4-1:幾何證明選講
已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD的值為____.

B.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知圓與直線相切,求實數(shù)a的值______.
C.選修4-5:不等式選講
不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).若以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.
(I)求曲線的直角坐標(biāo)方程;
(II)求直線被曲線所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:為參數(shù)).
(1)將C的參數(shù)方程化為普通方程;
(2)若把C上各點的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點到兩坐標(biāo)軸距離之積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

有人收集了春節(jié)期間平均氣溫x與某取暖商品銷售額y的有關(guān)數(shù)據(jù)如下表:

平均氣溫(℃)
﹣2
﹣3
﹣5
﹣6
銷售額(萬元)
20
23
27
30
根據(jù)以上數(shù)據(jù),用線性回歸的方法,求得銷售額y與平均氣溫x之間線性回歸方程y=x+a的系數(shù).則預(yù)測平均氣溫為﹣8℃時該商品銷售額為( )
A.34.6萬元      B.35.6萬元      C.36.6萬元      D.37.6萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

某班的40位同學(xué)已編號1,2,3,…,40,為了解該班同學(xué)的作業(yè)情況,老師收取了號碼能被5整除的8名同學(xué)的作業(yè)本,這里運(yùn)用的抽樣方法是( )

A.簡單隨機(jī)抽樣B.抽簽法C.系統(tǒng)抽樣D.分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知x與y之間的一組數(shù)據(jù):

x
0
1
2
3
y
1
3
5
7
 
則y與x的線性回歸方程為必過點(    )
A .(2,2)     B. (1.5 ,4)     C.(1.5 ,0)     D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在回歸分析中,代表了數(shù)據(jù)點和它在回歸直線上相應(yīng)位置的差異的是(    )

A.總偏差平方和 B.殘差平方和 C.回歸平方和 D.相關(guān)指數(shù)R2

查看答案和解析>>

同步練習(xí)冊答案