已知函數(shù)f(x)=
b
x2+x
(x>1)
x+1  (x≤1)
在R上連續(xù),則b=(  )
分析:根據(jù)函數(shù)f(x)在R上連續(xù),根據(jù)函數(shù)連續(xù)的定義進(jìn)行求解;
解答:解:當(dāng)x≤1時(shí),f(x)=x+1,f(1)=2,
當(dāng)x>1時(shí),f(x)=
b
x2+x
,可得x→1時(shí),f(1)=
b
2
,
因?yàn)閒(x)在R上連續(xù),
b
2
=2,∴b=4,
故選A;
點(diǎn)評(píng):此題主要考查函數(shù)的連續(xù)性定義,是一道基礎(chǔ)題,比較簡(jiǎn)單;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
b-2x2x+1
為定義在區(qū)間[-2a,3a-1]上的奇函數(shù),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(b<0)的值域?yàn)椋?,3].

(1)求實(shí)數(shù)b、c的值;

(2)判斷F(x)=lgf(x)在x∈[-1,1]上的單調(diào)性,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)= (b<0)的值域是[1,3],

(1)求b、c的值;

(2)判斷函數(shù)F(x)=lgf(x),當(dāng)x∈[-1,1]時(shí)的單調(diào)性,并證明你的結(jié)論;

(3)若t∈R,求證  lgF(|t|-|t+|)≤lg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西白鷺洲中學(xué)高一下學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)= (b<0)的值域是[1,3],

(1)求bc的值;

(2)判斷函數(shù)F(x)=lgf(x),當(dāng)x∈[-1,1]時(shí)的單調(diào)性,并證明你的結(jié)論;

(3)若t∈R,求證:lgF(|t|-|t+|)≤lg.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(b<0)的值域?yàn)椋?,3].

(1)求實(shí)數(shù)b、c的值;

(2)判斷函數(shù)F(x)=lgf(x)在[-1,1]上的單調(diào)性;

(3)若t∈R,求證:lg≤F(|t-|-|t+|)≤lg.

查看答案和解析>>

同步練習(xí)冊(cè)答案