(2012•福建)如圖,在長方體ABCD-A1B1C1D1中AA1=AD=1,E為CD中點.
(Ⅰ)求證:B1E⊥AD1
(Ⅱ)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A-B1E-A1的大小為30°,求AB的長.
分析:(Ⅰ)由題意及所給的圖形,可以A為原點,
AB
,
AD
,
AA 1
的方向為X軸,Y軸,Z軸的正方向建立空間直角坐標系,設AB=a,給出圖形中各點的坐標,可求出向量
AD 1
B 1E
的坐標,驗證其數(shù)量積為0即可證出兩線段垂直.
(II)由題意,可先假設在棱AA1上存在一點P(0,0,t),使得DP∥平面B1AE,求出平面B1AE法向量,可法向量與直線DP的方向向量內積為0,由此方程解出t的值,若能解出,則說明存在,若不存在符合條件的t的值,說明不存在這樣的點P滿足題意.
(III)由題設條件,可求面夾二面角的兩個平面的法向量,利用兩平面的夾角為30°建立關于a的方程,解出a的值即可得出AB的長
解答:解:(I)以A為原點,
AB
,
AD
,
AA 1
的方向為X軸,Y軸,Z軸的正方向建立空間直角坐標系,如圖,
設AB=a,則A(0,0,0),D(0,1,0),D1(0,1,1),E(
a
2
,1,0),B1(a,0,1)
AD 1
=(0,1,1),
B 1E
=(-
a
2
,1,-1),
AB 1
=(a,0,1),
A E
=(
a
2
,1,0),
AD 1
B 1E
=1-1=0
∴B1E⊥AD1
(II)假設在棱AA1上存在一點P(0,0,t),使得DP∥平面B1AE.此時
DP
=(0,-1,t).
又設平面B1AE的法向量
n
=(x,y,z).
n
⊥平面B1AE,∴
n
⊥B1A,
n
⊥AE,得
ax+z=0
ax
2
+y=0
,取x=1,得平面B1AE的一個法向量
n
=(1,-
a
2
,-a).
要使DP∥平面B1AE,只要
n
DP
,即有
n
DP
=0,有此得
a
2
-at=0,解得t=
1
2
,即P(0,0,
1
2
),
又DP?平面B1AE,
∴存在點P,滿足DP∥平面B1AE,此時AP=
1
2

(III)連接A1D,B1C,由長方體ABCD-A1B1C1D1及AA1=AD=1,得AD1⊥A1D.
∵B1C∥A1D,∴AD1⊥B1C.
由(I)知,B1E⊥AD1,且B1C∩B1E=B1
∴AD1⊥平面DCB1A1,
∴AD1是平面B1A1E的一個法向量,此時
AD 1
=(0,1,1).
AD 1
n
所成的角為θ,則cosθ=
AD 1
n
|
AD 1
||
n
|
=
-
a
2
-a
2
1+
a2
4
+a2

∵二面角A-B1E-A1的大小為30°,
∴|cosθ|=cos30°=
3
2
-
a
2
-a
2
1+
a2
4
+a2
=
3
2
,解得a=2,即AB的長為2
點評:本題考查利用空間向量這一工具求二面角,證明線面平行及線線垂直,解題的關鍵是建立恰當?shù)淖鴺讼导翱臻g位置關系與向量的對應,此類解題,方法簡單思維量小,但計算量大,易因為計算錯誤導致解題失敗,解題時要嚴謹,認真,利用空間向量求解立體幾何題是近幾年高考的熱點,必考內容,學習時要好好把握
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•福建)如圖所示,在邊長為1的正方形OABC中任取一點P,則點P恰好取自陰影部分的概率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建)如圖,在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M為棱DD1上的一點.
(1)求三棱錐A-MCC1的體積;
(2)當A1M+MC取得最小值時,求證:B1M⊥平面MAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建)如圖,等邊三角形OAB的邊長為8
3
,且其三個頂點均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設動直線l與拋物線E相切于點P,與直線y=-1相較于點Q.證明以PQ為直徑的圓恒過y軸上某定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建)如圖,橢圓E:
x2
a2
+
y2
b2
 =1(a>b>0)
的左焦點為F1,右焦點為F2,離心率e=
1
2
.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相較于點Q.試探究:在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案