本小題滿分10分)選修4-1:幾何證明選講

如圖,在直徑是AB的半圓上有兩個不同的點(diǎn)M、N,設(shè)AN與BM的交點(diǎn)是P.求證:.

證明:過點(diǎn)P作PE⊥AB于E,

∵AB為直徑,∴∠ANB=∠AMB=,

∴P,E,B,N四點(diǎn)共圓,P,E,A,M四點(diǎn)共圓.

由割線定理得,AE·AB=AP·AN ① , BE·AB=BP·BM ②,

由①+②得,AB(AE+BE)=AP·AN+BP·BM,即AP·AN+BP·BM=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點(diǎn)A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點(diǎn)C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點(diǎn),且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至點(diǎn)E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
x=cosα
y=sinα+1
(α是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三12月月考試題理科數(shù)學(xué) 題型:解答題

(本小題滿分10分)

    選做題:任選一道,兩題均做只以(I)的解答計分。

   (I)已知,求證:

   (II)已知正數(shù)a、b、c滿足,求證:

 

 

查看答案和解析>>

同步練習(xí)冊答案