已知sinα=-
4
5
,且α為第三象限角,那么tanα的值等于
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:依題意,利用同角三角函數(shù)間的關(guān)系式可求得cosα=-
3
5
,從而可得tanα的值.
解答: 解:∵sinα=-
4
5
,且α為第三象限角,
∴cosα=-
1-sin2α
=-
3
5

∴tanα=
sinα
cosα
=
4
3
,
故答案為:
4
3
點(diǎn)評(píng):本題考查同角三角函數(shù)間的關(guān)系式的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an},2Sn=an+1+1-2n+1,n∈N+且a1,a2+5,a3為等差數(shù)列
(1)求a1,an
(2)求證一切正整數(shù)n,有
1
a1
+
1
a2
+…+
1
an
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ終邊上一點(diǎn)P的坐標(biāo)為(x,3),x≠0,且cosθ=
10
10
x,求sinθ和cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ+sinθ=1,求cosθ+cosθ+cosθ的值;
已知α是△ABC的內(nèi)角,且sinα+cosα=
3
2
,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
tan(π+β)cot(-β-π)
cos(π-β)tan(3π-β)
|
=-2cos(-β-3π),則β的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|kπ-
π
4
≤x≤kπ+
π
4
,k∈Z},B={x|x2≤36},試求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程是
x=t+1
y=t-1
(t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cosθ,則直線l被圓C截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a是正實(shí)數(shù),若f(x)=
x2-6ax+10a2
+
x2+2ax+5a2
,(x∈R)的最小值為10,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=-x上的點(diǎn)P到直線4x+3y-8=0的距離的最小值為
 
和此時(shí)點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案