對(duì)某校高一年級(jí)的學(xué)生參加社區(qū)服務(wù)的次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),恨據(jù)此數(shù)據(jù)作出了右圖所示的頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:
分組頻數(shù)頻率
[10,15)60.3
[15,20)8N
[20,25)MP
[25,30)20.1
合計(jì)M1
(I)求出表中M、p及圖中a的值;
(II)學(xué)校訣定對(duì)參加社區(qū)服務(wù)的學(xué)生進(jìn)行表彰,對(duì)參加活動(dòng)次數(shù)在[25,30]區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值80元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[15,20)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值40元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[10,15)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值20元的學(xué)習(xí)用品,在所抽取的這M名學(xué)生中,任意取出2人,設(shè)X為此二人所獲得學(xué)習(xí)用品價(jià)值之差的絕對(duì)值,求X的分布列與數(shù)學(xué)期望E(X).

解:(Ⅰ)由題可知,,,
又6+8+m+2=M,
解得M=20,n=0.4,m=4,p=0.2,
故[15,20)組的頻率與組距之比a為0.08.(4分)
(Ⅱ)可知X的值可能為0元、20元、40元、60元,(5分)
,,.(9分)
所以X的分布列為:
X0204060
P
(10分)
.(12分)
分析:(I)根據(jù)頻率的定義列式并解之,可得M=20且n=0.4,再根據(jù)各組頻率之和等于1,算出p和m的值,最后根據(jù)直方圖的定義可得a的值;
(II)確定X的取值,求出相應(yīng)的概率,可得X的分布列與數(shù)學(xué)期望E(X).
點(diǎn)評(píng):本題以頻率分布直方圖為載體,考查了頻率的定義、直方圖的含義,考查離散型隨機(jī)變量的分布列與期望,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽三模)對(duì)某校高一年級(jí)的學(xué)生參加社區(qū)服務(wù)的次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),恨據(jù)此數(shù)據(jù)作出了右圖所示的頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:
分組 頻數(shù) 頻率
[10,15) 6 0.3
[15,20) 8 N
[20,25) M P
[25,30) 2 0.1
合計(jì) M 1
(I)求出表中M、p及圖中a的值;
(II)學(xué)校訣定對(duì)參加社區(qū)服務(wù)的學(xué)生進(jìn)行表彰,對(duì)參加活動(dòng)次數(shù)在[25,30]區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值80元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[15,20)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值40元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[10,15)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值20元的學(xué)習(xí)用品,在所抽取的這M名學(xué)生中,任意取出2人,設(shè)X為此二人所獲得學(xué)習(xí)用品價(jià)值之差的絕對(duì)值,求X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽三模)對(duì)某校高一年級(jí)的學(xué)生參加社區(qū)服務(wù)的次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),恨據(jù)此數(shù)據(jù)作出了如圖所示的頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:
分組 頻數(shù) 頻率
[10,15) 6 0.3
[15,20) 8 n
[20,25) m p
[25,30) 2 0.1
合計(jì) M 1
(I)求出表中M、p及圖中a的值;
(II)學(xué)校訣定對(duì)參加社區(qū)服務(wù)的學(xué)生進(jìn)行表彰,對(duì)參加活動(dòng)次數(shù)在[25,30)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值80元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[20,25)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值60元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[15,20)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值40元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[10,15)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值20元的學(xué)習(xí)用品,在所抽取的這M名學(xué)生中,任意取出2人,求此二人所獲得學(xué)習(xí)用品價(jià)值之差的絕對(duì)值不超過20元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省漳州市四地七校高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)對(duì)某校高一年級(jí)的學(xué)生參加社區(qū)服務(wù)的次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了下圖所示的頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:

(I)求出表中M、p及圖中a的值

(II)學(xué)校決定對(duì)參加社區(qū)服務(wù)的學(xué)生進(jìn)行表彰,對(duì)參加活動(dòng)次數(shù)在[25,30]區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值80元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[20,25)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值60元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[15,20)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值40元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[10,15)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值20元的學(xué)習(xí)用品,在所抽取的這M名學(xué)生中,任意取出2人,設(shè)X為此二人所獲得學(xué)習(xí)用品價(jià)值之差的絕對(duì)值,求X的分布列與數(shù)學(xué)期望E(X)。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省資陽市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

對(duì)某校高一年級(jí)的學(xué)生參加社區(qū)服務(wù)的次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),恨據(jù)此數(shù)據(jù)作出了如圖所示的頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖:
分組頻數(shù)頻率
[10,15)60.3
[15,20)8n
[20,25)mp
[25,30)20.1
合計(jì)M1
(I)求出表中M、p及圖中a的值;
(II)學(xué)校訣定對(duì)參加社區(qū)服務(wù)的學(xué)生進(jìn)行表彰,對(duì)參加活動(dòng)次數(shù)在[25,30)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值80元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[20,25)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值60元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[15,20)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值40元的學(xué)習(xí)用品,對(duì)參加活動(dòng)次數(shù)在[10,15)區(qū)間的每個(gè)學(xué)生發(fā)放價(jià)值20元的學(xué)習(xí)用品,在所抽取的這M名學(xué)生中,任意取出2人,求此二人所獲得學(xué)習(xí)用品價(jià)值之差的絕對(duì)值不超過20元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案