1.已知角α的終邊經(jīng)過點(diǎn)P(3,-4),則角α的正切值為( 。
A.$\frac{3}{4}$B.-4C.$-\frac{4}{3}$D.$\frac{3}{5}$

分析 利用三角函數(shù)的定義,寫出結(jié)果即可得解.

解答 解:角α的終邊經(jīng)過點(diǎn)P(3,-4),由題意可得,x=3,y=-4,
可得:tanα=$\frac{y}{x}$=-$\frac{4}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.觀察下列各式:
1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,則1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+…+9}$=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等比數(shù)列{an}中,a2,a6是方程x2-34x+64=0的兩根,則a4等于( 。
A.8B.-8C.±8D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|1<x<3},集合B={y|y=x-2,x∈A},則集合A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|-1<x<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=6cos2$\frac{ωx}{2}+\sqrt{3}$sinωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與l軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求f(x)解析式及其值域;
(Ⅱ)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=logax+1(a>0,a≠1)恒過點(diǎn)(m,n),其中(m,n)滿足方程3a2x+2b2y=a2b2,且a2+4b2=t,則t的最小值為14+4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=1-2x-\frac{3}{x-1}(x<1)$的最小值為2$\sqrt{6}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在極坐標(biāo)系中曲線C的極坐標(biāo)方程為ρsin2θ-cosθ=0,點(diǎn)$M({1,\frac{π}{2}})$.以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系.斜率為-1的直線l過點(diǎn)M,且與曲線C交于A,B兩點(diǎn).
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)求兩點(diǎn)A,B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax3+bx2+cx有極大值5,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過(1,0),(2,0)點(diǎn),如圖所示.
(1)求原函數(shù)取得極大值時(shí)x的值(要求列表說明);
(2)求a,b,c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案