如圖,在四邊形ABCD中,A=135°∠CBD=60°,BC⊥AB,垂足為B,AD=4
2
,BC=5.
(1)求BD的長;
(2)求△BCD的面積S.
分析:(1)△ABD中,由已知可得∠ABD=30°,利用正弦定理
AD
sin∠ABD
=
BD
sinA
,可求BD
(2)把BD=8,BC=5,∠DBC=60°代入三角形的面積公式S=
1
2
BD•BC•sin∠DBC
可求S
解答:精英家教網(wǎng)解:(1)由題意可得∠ABD=30°,∠ADB=15°
△ABD中,由正弦定理可得
AD
sin∠ABD
=
BD
sin A

4
2
1
2
=
BD
2
2

∴BD=8

(2)由(1)BD=8,∠CBD=60°,BC=5
S△BCD=
1
2
×BC•BD•sin∠DBC=
1
2
×5×8×
3
2
=10
3
點評:本題主要考查了正弦定理在解三角形中應(yīng)用,解題中要善于把題目中所給的條件轉(zhuǎn)化到三角形中,試題較易.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線段AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點B作射線BBl∥AC.動點D從點A出發(fā)沿射線AC方向以每秒5個單位的速度運動,同時動點E從點C出發(fā)沿射線AC方向以每秒3個單位的速度運動.過點D作DH⊥AB于H,過點E作EF⊥AC交射線BB1于F,G是EF中點,連接DG.設(shè)點D運動的時間為t秒.
(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;
(2)當(dāng)△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
①當(dāng)t>
35
時,連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB,有公共點時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習(xí)冊答案