已知定義域為[0,1]的函數(shù)同時滿足以下三個條件:①對任意x∈[0,1],總有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否同時適合①②③?并予以證明;
(3)假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證:f(x0)=x0
分析:(1)由①知:f(0)≥0;由③知f(0)≤0,從而得到f(0)=0.
(2)由題設知g(1)=1;由x∈[0,1]知2x∈[1,2],得g(x)∈[0,1],有g(shù)(x)≥0;設x1≥0,x2≥0,x1+x2≤1,則2x1≥1,2x2≥1;由此能夠證明函數(shù)g(x)=2x-1在區(qū)間[0,1]上同時適合①②③.
(3)若f(x0)>x0,則由題設知f(x0)-x0∈[0,1],且由①知f[f(x0)-x0]≥0,由此入手能證明f(x0)=x0
解答:解:(1)由①知:f(0)≥0;由③知:f(0+0)≥f(0)+f(0),即f(0)≤0;
∴f(0)=0
(2 ) 證明:由題設知:g(1)=2-1=1;
由x∈[0,1]知2x∈[1,2],得g(x)∈[0,1],有g(shù)(x)≥0;
設x1≥0,x2≥0,x1+x2≤1,則2x1≥1,2x2≥1
g(x1+x2)-[g(x1)+g(x2)]=(2x1+x2-1)-[(2x1-1)+(2x2-1)]=(2x1-1)(2x2-1)≥0
即g(x1+x2)≥g(x1)+g(x2
∴函數(shù)g(x)=2x-1在區(qū)間[0,1]上同時適合①②③.
(3)證明:若f(x0)>x0,則由題設知:f(x0)-x0∈[0,1],且由①知f[f(x0)-x0]≥0,
∴由題設及③知:x0=f(f(x0))=f[(f(x0)-x0)+x0]=f[f(x0)-x0]+f(x0)≥f(x0
矛盾;
若f(x0)<x0,則則由題設知:x0-f(x0)∈[0,1],且由①知f[x0-f(x0)]≥0,
∴同理得:f(x0)=f[(x0-f(x0))+f(x0)]=f[x0-f(x0)]+f(f(x0))≥f(f(x0))=x0,矛盾;
故由上述知:f(x0)=x0
點評:本題考查函數(shù)值的求法和函數(shù)恒成立問題的應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若對于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f(x)同時滿足以下三個條件:
①對任意的x∈[0,1],總有f(x)≥0; 
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,并且稱f(x)為“友誼函數(shù)”,
請解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
(3)已知f(x)為“友誼函數(shù)”,且 0≤x1<x2≤1,求證:f(x1)≤f(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f (x1+x2)≥f (x1)+f (x2).
(1)試求f(0)的值;
(2)試求函數(shù)f(x)的最大值;
(3)試證明:當x∈(
1
2n
1
2n-1
]
,n∈N+時,f(x)<2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為[0,1]的函數(shù)f (x)同時滿足:
①對于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)試求f(0)的值;
(2)試求函數(shù)f (x)的最大值;
(3)試證明:當x∈(
1
4
,
1
2
]
時,f(x)<2x.

查看答案和解析>>

同步練習冊答案