已知函數(shù).
(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且實(shí)數(shù)滿足,問(wèn):函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由.
(1);(2)在處的切線不能平行于軸.
【解析】
試題分析:(1)函數(shù)在定義域內(nèi)為增函數(shù),則其導(dǎo)數(shù)恒大于等于0.求導(dǎo)得:
.由得:.要恒成立,只需即可.接下來(lái)利用重要不等式可求出的最小值.
由題意,知恒成立,即.
(2)本題屬探索性問(wèn)題.對(duì)探索性問(wèn)題,常用的方法是假設(shè)成立,然后利用題設(shè)試著去求相關(guān)的量.若能求出來(lái),則成立;若無(wú)解,則不成立.
在本題中,總的方向如下:首先假設(shè)在的切線平行于軸,則是的極值點(diǎn),故有.又函數(shù)存在兩個(gè)零點(diǎn),所以,再加上,這樣有4個(gè)方程(4個(gè)未知數(shù)).接下來(lái)就試著求.若能求出,則切線能平行于軸(同時(shí)也就求出了該切線方程);若不能求出,則切線不能平行于軸.
試題解析:(1)
由題意,知恒成立,即.
又,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.
故,所以.
(2)將求導(dǎo)得:.
存在兩個(gè)零點(diǎn),所以.
設(shè)在的切線平行于軸,則.
結(jié)合題意,有,
①—②得
所以由④得
所以 ……………………………………⑤
設(shè),⑤式變?yōu)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204264654806363/SYS201404120427243448735086_DA.files/image031.png">
設(shè),
所以函數(shù)在上單調(diào)遞增,
因此,,即
也就是,,此式與⑤矛盾.所以在處的切線不能平行于軸.
考點(diǎn):1、函數(shù)的單調(diào)性;2、函數(shù)的零點(diǎn);3、函數(shù)的導(dǎo)數(shù)及其應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)已知函數(shù).
(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù),
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省岳陽(yáng)市高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)。
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù).
(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;
(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒(méi)有實(shí)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com