【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時,解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實數(shù)a的取值范圍.

【答案】
(1)解:∵當(dāng)a=5時,不等式f(x)<0即

x2+5x+6<0,

∴(x+2)(x+3)<0,

∴﹣3<x<﹣2.

∴不等式f(x)<0的解集為{x|﹣3<x<﹣2}


(2)解:不等式f(x)>0的解集為R,

∴x的一元二次不等式x2+ax+6>0的解集為R,

∴△=a2﹣4×6<0﹣2 <a<2

∴實數(shù)a的取值范圍是(﹣2 ,2


【解析】(1)首先把一元二次不等式變?yōu)閤2+5x+6<0,然后運用因式分解即可解得不等式的解集;(2)要使一元二次不等式x2+ax+6>0的解集為R,只需△<0,求出實數(shù)a的取值范圍即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分某旅行社為調(diào)查市民喜歡“人文景觀”景點是否與年齡有關(guān),隨機抽取了55名市民,得到數(shù)據(jù)如下表:

喜歡

不喜歡

合計

大于40歲

20

5

25

20歲至40歲

10

20

30

合計

30

25

55

(1)判斷是否有99.5%的把握認(rèn)為喜歡“人文景觀”景點與年齡有關(guān)?

(2)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取6人作進一步調(diào)查,將這6位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓軸的正半軸交于點,以為圓心的圓

與圓交于兩點.

(1)若直線與圓切于第一象限,且與坐標(biāo)軸交于,當(dāng)線段長最小時,求直線的方程;

(2)設(shè)是圓上異于的任意一點,直線分別與軸交于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),).

(1)討論的單調(diào)性;

(2)設(shè), ,若)是的兩個零點,且,

試問曲線在點處的切線能否與軸平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 用總長14.8米的鋼條制作一個長方體容器的框架,如果所制容器底面一邊的長比另一邊的長多0.5米,那么高為多少時容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓經(jīng)過點(2,0),(0,4),(0,2)求:
(1)圓的方程
(2)圓的圓心和半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1=8,a4=2,且滿足an+2﹣2an+1+an=0,n∈N*
(1)求數(shù)列{an}的通項;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點

(1)求橢圓的方程;

(2)過點作直線與橢圓交于兩點,連接為坐標(biāo)原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調(diào)試,經(jīng)調(diào)試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產(chǎn)成本

檢驗費/次

調(diào)試費

出廠價

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產(chǎn)成本檢驗費調(diào)試費);

(Ⅲ)假設(shè)每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案