【題目】已知拋物線的焦點(diǎn)為F,過點(diǎn)F,斜率為1的直線與拋物線C交于點(diǎn)A,B,且

(1)求拋物線C的方程;

(2)過點(diǎn)Q(1,1)作直線交拋物線C于不同于R(1,2)的兩點(diǎn)D、E,若直線DR,ER分別交直線于M,N兩點(diǎn),求|MN|取最小值時(shí)直線DE的方程.

【答案】(1);(2)

【解析】

1)過點(diǎn)F且斜率為的直線方程與拋物線的方程聯(lián)立,利用求得的值,即可求得拋物線的方程;

(2)設(shè)D(x1,y1),E(x2,y2),直線DE的方程為,直線的方程為,由題意求出得值,建立的解析式,再求出的最小值以及直線的方程.

(1)拋物線的焦點(diǎn)為,

直線方程為:,

代入中,消去y得: ,

設(shè)A(x1,y1),B(x2,y2),則有,

,得,即,解得,

所以拋物線C的方程為:;

(2)設(shè)D(x1,y1),E(x2,y2),直線DE的方程為,如圖所示,

,消去,整理得:,

設(shè)直線DR的方程為,

,解得點(diǎn)M的橫坐標(biāo),

又k1==,∴xM==-,

同理點(diǎn)N的橫坐標(biāo),

=4,

∴|MN|=|xM-xN|=|-+|=2||==,

,則,

∴|MN|====,

所以當(dāng),即時(shí),|MN|取最小值為,

此時(shí)直線DE的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年泉州市農(nóng)村電商發(fā)展迅猛,成為創(chuàng)新農(nóng)產(chǎn)品交易方式、增加農(nóng)民收入、引導(dǎo)農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革、促進(jìn)鄉(xiāng)村振興的重要力量,成為鄉(xiāng)村振興的新引擎.2019年大學(xué)畢業(yè)的李想,選擇回到家鄉(xiāng)泉州自主創(chuàng)業(yè),他在網(wǎng)上開了一家水果網(wǎng)店.2019年雙十一期間,為了增加水果銷量,李想設(shè)計(jì)了下面兩種促銷方案:方案一:購買金額每滿120元,即可抽獎(jiǎng)一次,中獎(jiǎng)可獲得20元,每次中獎(jiǎng)的概率為),假設(shè)每次抽獎(jiǎng)相互獨(dú)立.方案二:購買金額不低于180元時(shí),即可優(yōu)惠元,并在優(yōu)惠后的基礎(chǔ)上打九折.

1)在促銷方案一中,設(shè)每10個(gè)抽獎(jiǎng)人次中恰有6人次中獎(jiǎng)的概率為,求的最大值點(diǎn)

2)若促銷方案二中,李想每筆訂單得到的金額均不低于促銷前總價(jià)的八折,求的最大值;

3)以(1)中確定的作為的值,且當(dāng)取最大值時(shí),若某位顧客一次性購買了360元,則該顧客應(yīng)選擇哪種促銷方案?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn)(其中為坐標(biāo)系原點(diǎn)),點(diǎn)到定點(diǎn)的距離比到直線的距離大1,動(dòng)點(diǎn)的軌跡方程為.

1)求曲線的方程;

2)若過點(diǎn)的直線與曲線相交于兩點(diǎn).

①若,求直線的直線方程;

②分別過點(diǎn)作曲線的切線且交于點(diǎn),是否存在以為圓心,以為半徑的圓與經(jīng)過點(diǎn)且垂直于直線的直線相交于、兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺(tái))

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;

(2)若該商場(chǎng)的營銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對(duì)應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.

(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);

)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時(shí),討論的單調(diào)性;

(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若是函數(shù)的零點(diǎn),是函數(shù)的零點(diǎn).

1)比較的大;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.

(Ⅰ)求袋中原有白球的個(gè)數(shù):

(Ⅱ)求取球次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案