精英家教網 > 高中數學 > 題目詳情
已知等比數列{an}的首項為a1=2,公比為q(q為正整數),且滿足3a3是8a1與a5的等差中項;數列{bn}滿足2n2-(t+bn)n+bn=0(t∈R,n∈N*).
(1)求數列{an}的通項公式;
(2)試確定t的值,使得數列{bn}為等差數列;
(3)當{bn}為等差數列時,對任意正整數k,在ak與ak+1之間插入2共bk個,得到一個新數列{cn}.設Tn是數列{cn}的前n項和,試求滿足Tn=2cm+1的所有正整數m的值.
【答案】分析:(1)由3a3是8a1與a5的等差中項得到6a3=8a1+a5,根據首項2和公比q,利用等比數列的通項公式化簡這個式子即可求出q的值,利用首項和公比即可得到通項公式;
(2)由2n2-(t+bn)n+bn=0解出bn,列舉出b1,b2和b3,要使數列{bn}為等差數列,根據等差數列的性質可知b1+b3=2b2,把b1,b2和b3的值代入即可求出t的值;
(3)顯然c1=c2=c3=2,容易判斷m=1時不合題意,m=2適合題意,當m大于等于3時,得到cm+1必是數列{an}中的某一項ak+1,然后根據Tn=2cm+1列舉出各項,利用等差、等比數列的求和公式化簡后得到2k=k2+k-1,把k=1,2,3,4,代入等式得到不是等式的解,利用數學歸納法證明得到k大于等于5時方程沒有正整數解,所以得到滿足題意的m僅有一個解m=2.
解答:解:(1)因為6a3=8a1+a5,所以6q2=8+q4,
解得q2=4或q2=2(舍),則q=2
又a1=2,所以an=2n
(2)由2n2-(t+bn)n+bn=0,得bn=,
所以b1=2t-4,b2=16-4t,b3=12-2t,
則由b1+b3=2b2,得t=3
而當t=3時,bn=2n,由bn+1-bn=2(常數)知此時數列{bn}為等差數列;
(3)因為c1=c2=c3=2,易知m=1不合題意,m=2適合題意
當m≥3時,若后添入的數2等于cm+1個,則一定不適合題意,
從而cm+1必是數列{an}中的某一項ak+1
則(2+22+23+…+2k)+2(b1+b2+b3+…+bk)=2×2k+1,
,即2k+1-2k2-2k+2=0.
也就是2k=k2+k-1,
易證k=1,2,3,4不是該方程的解,而當n≥5時,2n>n2+n-1成立,證明如下:
1°當n=5時,25=32,k2+k-1=29,左邊>右邊成立;
2°假設n=k時,2k>k2+k-1成立,
當n=k+1時,2k+1>2k2+2k-2=(k+1)2+(k+1)-1+k2-k-3
≥(k+1)2+(k+1)-1+5k-k-3=(k+1)2+(k+1)-1+k+3(k-1)>(k+1)2+(k+1)-1
這就是說,當n=k+1時,結論成立.
由1°,2°可知,2n>n2+n-1(n≥5)時恒成立,故2k=k2+k-1無正整數解.
綜上可知,滿足題意的正整數僅有m=2.
點評:此題考查學生靈活運用等差數列的性質及等比數列的通項公式化簡求值,靈活運用數列解決實際問題,以及會利用數學歸納法進行證明,是一道比較難的題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、已知等比數列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}滿足a1•a7=3a3a4,則數列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數列的第5項,第3項,第2項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=log2an,求數列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等比數列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案