【題目】輪船從某港口將一些物品送到正航行的輪船上,在輪船出發(fā)時(shí),輪船位于港口北偏西且與相距20海里的處,并正以30海里的航速沿正東方向勻速行駛,假設(shè)輪船沿直線方向以海里/小時(shí)的航速勻速行駛,經(jīng)過小時(shí)與輪船相遇.
(1)若使相遇時(shí)輪船航距最短,則輪船的航行速度大小應(yīng)為多少?
(2)假設(shè)輪船的最高航速只能達(dá)到30海里/小時(shí),則輪船以多大速度及什么航行方向才能在最短時(shí)間與輪船相遇,并說明理由.
【答案】(1)輪船以海里/小時(shí)的速度航行,相遇時(shí)輪船航距最短;(2)航向?yàn)楸逼珫|,航速為30海里/小時(shí),輪船能在最短時(shí)間與輪船相遇.
【解析】試題分析:(1)設(shè)兩輪船在處相遇,在 中,利用余弦定理得出關(guān)于t的函數(shù),從而得出的最小值及其對(duì)應(yīng)的,得出速度;
(2)利用余弦定理計(jì)算航行時(shí)間,得出 距離,從而得出 的度數(shù),得出航行方案.
試題解析:(1)設(shè)相遇時(shí)輪船航行的距離為海里,則
.
∴當(dāng)時(shí), , ,
即輪船以海里/小時(shí)的速度航行,相遇時(shí)輪船航距最短.
(2)設(shè)輪船與輪船在處相遇,則 ,
即.
∵,
∴,即,解得,又時(shí),
∴時(shí), 最小且為,此時(shí)中,
∴航向?yàn)楸逼珫|,航速為30海里/小時(shí),
輪船能在最短時(shí)間與輪船相遇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四面體的棱長(zhǎng)為,為棱的中點(diǎn),過作其外接球的截面,則截面面積的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一系列函數(shù)的解析式和值域相同,但是定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2 , x∈[1,2],與函數(shù)y=x2 , x∈[﹣2,﹣1]即為“同族函數(shù)”.下面的函數(shù)解析式也能夠被用來構(gòu)造“同族函數(shù)”的是( )
A.y=x
B.y=|x﹣3|
C.y=2x
D.y=log
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|(x﹣a)[x﹣(a+3)]≤0}(a∈R),B={x|x2﹣4x﹣5>0}.
(1)若A∩B=,求實(shí)數(shù)a的取值范圍;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x),對(duì)任意a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,當(dāng)x>0時(shí),f(x)>1;且f(2)=3,
(1)求f(0)及f(1)的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性,并給予證明;
(3)若f(﹣kx2)+f(kx﹣2)<2對(duì)任意的x∈R恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各式中,正確的個(gè)數(shù)是( )
①={0};②{0};③∈{0};④0={0};⑤0∈{0};⑥{1}∈{1,2,3};⑦{1,2}{1,2,3};⑧{a,b}={b,a}.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為,以橢圓的上頂點(diǎn)為圓心作圓,
,圓與橢圓在第一象限交于點(diǎn),在第二象限交于點(diǎn).
(1)求橢圓的方程;
(2)求的最小值,并求出此時(shí)圓的方程;
(3)設(shè)點(diǎn)是橢圓上異于的一點(diǎn),且直線分別與軸交于點(diǎn)為坐標(biāo)原點(diǎn),求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若拋物線的焦點(diǎn)是橢圓左頂點(diǎn),求此拋物線的標(biāo)準(zhǔn)方程;
(2)若某雙曲線與橢圓共焦點(diǎn),且以為漸近線,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商從外地一水殖廠購(gòu)進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類統(tǒng)計(jì)結(jié)果如下圖:
(1)記事件為:“從這批小龍蝦中任取一只,重量不超過35的小龍蝦”,求的估計(jì)值;
(2)試估計(jì)這批小龍蝦的平均重量;
(3)為適應(yīng)市場(chǎng)需求,制定促銷策略.該經(jīng)銷商又將這批小龍蝦分成三個(gè)等級(jí),并制定出銷售單價(jià),如下表:
等級(jí) | 一等品 | 二等品 | 三等品 |
重量() | |||
單價(jià)(元/只) | 1.2 | 1.5 | 1.8 |
試估算該經(jīng)銷商以每千克至多花多少元(取整數(shù))收購(gòu)這批小龍蝦,才能獲得利潤(rùn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com