(本小題15分)已知拋物線,過點的直線交拋物線兩點,且
(1)求拋物線的方程;
(2)過點軸的平行線與直線相交于點,若是等腰三角形,求直線的方程.

(15分)(1)設,
……………………(
,所以
拋物線方程為……………………6分
(2)方程()為,則得
, 且
①若是以為底邊的等腰三角形,,,
所以三點共線,而,所以的中點,則,
則直線的方程為 …………9分
②若是以為底邊的等腰三角形,作軸交,
,則中點,,又,得
則直線的方程為.………………12分
③若是以為底邊的等腰三角形
的中點,且
,得,[來源:學科網(wǎng)ZXXK]

所以直線的方程為…………………………15分
綜上,當△QMN為等腰三角形時,直線MN的方程為:
y=4,或y=±或y=±.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題15分)已知函數(shù)

(1)若函數(shù)處有極值為,求的值;

(2)若對任意上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:寧波市2010屆高三三模考試文科數(shù)學試題 題型:解答題

(本小題15分)已知函數(shù)
(1)若函數(shù)處有極值為,求的值;
(2)若對任意,上單調(diào)遞增,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:全國高中數(shù)學聯(lián)合競賽一試 題型:解答題

(本小題15分)已知,是實數(shù),方程有兩個實根,,數(shù)列滿足,
(Ⅰ)求數(shù)列的通項公式(用,表示);
(Ⅱ)若,,求的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆浙江省高二下學期第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題15分)已知函數(shù)f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函數(shù),

在(-∞,-2)上為減函數(shù).

(1)求f(x)的表達式;

(2)若當x∈時,不等式f(x)<m恒成立,求實數(shù)m的值;

(3)是否存在實數(shù)b使得關(guān)于x的方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個相異的實根,若存在,求實數(shù)b的取值范圍.

 

查看答案和解析>>

同步練習冊答案