【題目】已知橢圓的兩個(gè)焦點(diǎn)為,,焦距為,直線:與橢圓相交于,兩點(diǎn),為弦的中點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線:與橢圓相交于不同的兩點(diǎn),,,若為坐標(biāo)原點(diǎn)),求的取值范圍.

【答案】(1)(2)

【解析】

1)因?yàn)?/span>為弦的中點(diǎn),設(shè),,將其代入利用點(diǎn)差法,即可求得答案.

2)因?yàn)?/span>,,三點(diǎn)共線,, 根據(jù)三點(diǎn)共線性質(zhì)可得:,,將直線和橢圓聯(lián)立方程消掉,結(jié)合已知,利用韋達(dá)定理即可求得答案.

1 焦距為,,

設(shè),,

為弦的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得:,,

將其,代入橢圓:

將兩式作差可得:,

,

——.

——

由①②得:

橢圓的標(biāo)準(zhǔn)方程為.

2 ,,三點(diǎn)共線,

根據(jù)三點(diǎn)共線性質(zhì)可得: ,

設(shè),,則,

.

將直線和橢圓聯(lián)立方程消掉.

可得:.

——①,

根據(jù)韋達(dá)定理:,,

代入,可得:,,

,即.

,,

——②,

代入①式得,即,

,

滿足②式,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)是反映空氣質(zhì)量狀況的指數(shù),指數(shù)值越小,表明空氣質(zhì)量越好,其對應(yīng)關(guān)系如表:

指數(shù)值

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖是某市101—20指數(shù)變化趨勢:

下列敘述正確的是( )

A.該市10月的前半個(gè)月的空氣質(zhì)量越來越好

B.20天中的中度污染及以上的天數(shù)占

C.20天中指數(shù)值的中位數(shù)略高于100

D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一幢高樓上安放了一塊高約10 米的 LED 廣告屏,一測量愛好者在與高樓底部同一水平線上的 C 處測得廣告屏頂端A 處的仰角為 31.80°,再向大樓前進(jìn) 20 米到 D 處,測得廣告屏頂端 A 處的仰角為 37.38°(人的高度忽略不計(jì)).

1)求大樓的高度(從地面到廣告屏頂端)(精確到 1 米);

2)若大樓的前方是一片公園空地,空地上可以安放一些長椅,為使坐在其中一個(gè)長椅上觀看廣告屏最清晰(長 椅的高度忽略不計(jì)),長椅需安置在距大樓底部 E 處多遠(yuǎn)?已知視角 AMB M 為觀測者的位置, B 為廣告屏 底部)越大,觀看得越清晰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面,已知,,,點(diǎn)是棱的中點(diǎn).

1)求證:平面;

2)求二面角的余弦值;

3)在棱上是否存在一點(diǎn),使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)對任意的,恒成立,請求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“干支紀(jì)年法”是中國歷法上自古以來就一直使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構(gòu)成了“干支紀(jì)年法”,其相配順序?yàn)椋杭鬃、乙丑、丙?/span>癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個(gè)周期,周而復(fù)始,循環(huán)記錄.按照“干支紀(jì)年法”,中華人民共和國成立的那年為己丑年,則2013年為(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在正項(xiàng)數(shù)列中,首項(xiàng),點(diǎn)在雙曲線上,數(shù)列中,點(diǎn)在直線上,其中是數(shù)列的前項(xiàng)和.

(1)求數(shù)列、的通項(xiàng)公式;

(2)若,求證: 數(shù)列為遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有唯一的極小值點(diǎn),求實(shí)數(shù)的取值范圍;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱柱ABCDA1B1C1D1中,OBD的中點(diǎn),E是棱CC1上任意一點(diǎn).

1)證明:BDA1E

2)如果AB=2,OEA1E,求AA1的長.

查看答案和解析>>

同步練習(xí)冊答案