【題目】現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義,兩點(diǎn)間的“直角距離”為:.
(1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的“直角距離”為2的“格點(diǎn)”的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))
(2)求到兩定點(diǎn)、的“直角距離”和為定值的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.(在以下三個(gè)條件中任選一個(gè)做答)
①,,;
②,,;
③,,.
(3)寫出同時(shí)滿足以下兩個(gè)條件的“格點(diǎn)”的坐標(biāo),并說明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
①到,兩點(diǎn)“直角距離”相等;
②到,兩點(diǎn)“直角距離”和最小.
【答案】(1)、、、、、、、
(2)答案不唯一,見解析
(3)、、、、、、、、,理由見解析
【解析】
(1)由“直角距離”的定義知,進(jìn)而得到所求點(diǎn)坐標(biāo);
(2)根據(jù)“直角距離”的定義,分別結(jié)合條件①②③,得到動(dòng)點(diǎn)軌跡方程;利用分類討論的方式去掉絕對(duì)值符號(hào)即可得到不同區(qū)間內(nèi)動(dòng)點(diǎn)的軌跡,從而做出圖形;
(3)由條件①可得:;由條件②可得:,在平面直角坐標(biāo)系中做出兩個(gè)條件下的點(diǎn)構(gòu)成的區(qū)域,取交集,結(jié)合圖形得到最終結(jié)果.
(1)由“直角距離”的定義可知所求點(diǎn)坐標(biāo)滿足:
則所求點(diǎn)為:、、、、、、、
(2)條件①:動(dòng)點(diǎn)軌跡方程為:
⑴當(dāng),時(shí),;⑵當(dāng),時(shí),;
⑶當(dāng),時(shí),;⑷當(dāng),時(shí),;
⑸當(dāng),時(shí),;⑹當(dāng),時(shí),
條件②:動(dòng)點(diǎn)軌跡方程為:
⑴當(dāng),時(shí),;⑵當(dāng),時(shí),;
⑶當(dāng),時(shí),;
由對(duì)稱性可得其他部分圖形
條件③:動(dòng)點(diǎn)軌跡方程為:
⑴當(dāng),時(shí),;⑵當(dāng),時(shí),;
⑶當(dāng),時(shí),
由對(duì)稱性可得其他部分圖形
(3)滿足條件的格點(diǎn)有、、、、、、、、
對(duì)于①,設(shè)滿足到、兩點(diǎn)“直角距離”相等
即滿足,可得:
對(duì)于②,設(shè)到、兩點(diǎn)“直角距離”和最小
即
當(dāng)且僅當(dāng)且時(shí)等號(hào)成立
可得:
在直角坐標(biāo)系中畫出分別滿足條件①、②的點(diǎn)構(gòu)成的區(qū)域,如下圖所示:
則同時(shí)滿足條件①、②的格點(diǎn)的坐標(biāo)是:、、、、、、、、
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()經(jīng)過點(diǎn),且兩個(gè)焦點(diǎn),的坐標(biāo)依次為和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為,若,證明:直線與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,拋物線C上橫坐標(biāo)為3的點(diǎn)M到焦點(diǎn)F的距離為4.
(1)求拋物線C的方程;
(2)過拋物線C的焦點(diǎn)F且斜率為1的直線l交拋物線C于A、B兩點(diǎn),求弦長(zhǎng)|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點(diǎn).
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線,有如下結(jié)論:
①曲線關(guān)于原點(diǎn)對(duì)稱;
②曲線關(guān)于坐標(biāo)軸對(duì)稱;
③曲線是封閉圖形;
④曲線不是封閉圖形,且它與圓無公共點(diǎn);
⑤曲線與曲線有個(gè)交點(diǎn),這點(diǎn)構(gòu)成正方形.其中有正確結(jié)論的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)輸公司有名駕駛員和名工人,有輛載重量為噸的甲型卡車和輛載重量為噸的乙型卡車.某天需運(yùn)往地至少噸的貨物,派用的車需滿載且只運(yùn)送一次.派用的每輛甲型卡車需配名工人,運(yùn)送一次可得利潤(rùn)元:派用的每輛乙型卡車需配名工人,運(yùn)送一次可得利潤(rùn)元,該公司合理計(jì)劃當(dāng)天派用兩類卡車的車輛數(shù),可得的最大利潤(rùn)多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù),當(dāng)時(shí),,若,為銳角三角形的兩個(gè)內(nèi)角,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
①“若,則x,y互為倒數(shù)”的逆命題;
②“面積相等的三角形全等”的否命題;
③“若,則有實(shí)根”的逆否命題;
④“若,則”的逆命題。
其中真命題是( )
A.①②④B.②③④C.①②③D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com