如圖,在直三棱柱ABC-A1B1C1中,數(shù)學(xué)公式,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱AA1、CC1上,且AE=C1F=2.
(1)求三棱錐A1-B1C1F的體積;
(2)求異面直線BE與A1F所成的角的大小.

解:(1)在直三棱柱ABC-A1B1C1中,F(xiàn)C1⊥平面A1B1C1,故FC1=2是三棱錐A1-B1C1F的高.
而直角三角形的===2.
∴三棱錐A1-B1C1F的體積===
(2)連接EC,∵A1E∥FC,A1E=FC=4,
∴四邊形A1ECF是平行四邊形,
∴A1C∥EC,
∴∠BEC是異面直線A1F與BE所成的角或其補(bǔ)角.
∵AE⊥AB,AE⊥AC,AC⊥AB,AE=AB=AC=2,∴EC=EB=BC=2
∴△BCE是等邊三角形.
∴∠BEC=60°,即為異面直線BE與A1F所成的角.
分析:(1)利用直三棱柱ABC-A1B1C1中的性質(zhì),及三棱錐A1-B1C1F的體積==即可得出.
(2)連接EC,∵A1E∥FC,A1E=FC=4,可得四邊形A1ECF是平行四邊形,利用其性質(zhì)可得A1C∥EC,可得∠BEC是異面直線A1F與BE所成的角或其補(bǔ)角,在△BCE中求出即可.
點(diǎn)評:熟練利用直三棱柱的性質(zhì)、三棱錐的體積及等體積變形、平行四邊形的判定及性質(zhì)、異面直線所成的角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊答案