已知兩點(diǎn),點(diǎn)在以、為焦點(diǎn)的橢圓上,且、、 構(gòu)成等差數(shù)列.

(1)求橢圓的方程;
(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且. 求四邊形面積的最大值.

(1)        (2)

解析試題分析:解:(1)依題意,設(shè)橢圓的方程為構(gòu)成等差數(shù)列,, .又,
橢圓的方程為

(2) 將直線的方程代入橢圓的方程中,得
由直線與橢圓僅有一個(gè)公共點(diǎn)知,
化簡(jiǎn)得:
設(shè),
(法一)當(dāng)時(shí),設(shè)直線的傾斜角為
,
,
,      11分
,當(dāng)時(shí),,
當(dāng)時(shí),四邊形是矩形,
所以四邊形面積的最大值為
(法二),


四邊形的面積,


當(dāng)且僅當(dāng)時(shí),,故
所以四邊形的面積的最大值為
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評(píng):主要是考查了直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定圓的圓心為,動(dòng)圓過點(diǎn),且和圓相切,動(dòng)圓的圓心的軌跡記為
(Ⅰ)求曲線的方程;
(Ⅱ)若點(diǎn)為曲線上一點(diǎn),試探究直線:與曲線是否存在交點(diǎn)? 若存在,求出交點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)系xOy中,過橢圓M:右焦點(diǎn)的直線于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn),求其方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,雙曲線與拋物線相交于,直線AC、BD的交點(diǎn)為P(0,p)。

(I)試用m表示
(II)當(dāng)m變化時(shí),求p的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的焦距為,離心率為,其右焦點(diǎn)為,過點(diǎn)作直線交橢圓于另一點(diǎn).
(Ⅰ)若,求外接圓的方程;
(Ⅱ)若直線與橢圓相交于兩點(diǎn)、,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系曲線C的極坐標(biāo)方程為cos()=1,M,N分別為C與x軸,y軸的交點(diǎn)。
(I)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(II)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓與離心率為的橢圓)相切于點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)引兩條互相垂直的兩直線、與兩曲線分別交于點(diǎn)與點(diǎn)、(均不重合).
(ⅰ)若為橢圓上任一點(diǎn),記點(diǎn)到兩直線的距離分別為、,求的最大值;
(ⅱ)若,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.若橢圓上的點(diǎn)到焦點(diǎn)、的距離之和等于4.
(1)寫出橢圓的方程和焦點(diǎn)坐標(biāo);
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)、,當(dāng)的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案