【題目】設(shè)集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠且BA,求實(shí)數(shù)a、b的值.
【答案】a=-1,b=1, a=b=1, a=0,b=-1
【解析】試題分析:集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠且BA,∵B中元素是關(guān)于x的方程x2-2ax+b=0的根,且B{-1,1},∴關(guān)于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有兩個(gè)相等根的條件是Δ=0.∵B={x|x2-2ax+b=0}A={-1,1},且B≠,∴B={-1}或B={1}或B={-1,1},分情況進(jìn)行討論即可.
試題解析:
∵B中元素是關(guān)于x的方程x2-2ax+b=0的根,且B{-1,1},
∴關(guān)于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有兩個(gè)相等根的條件是Δ=0.
∵B={x|x2-2ax+b=0}A={-1,1},且B≠,
∴B={-1}或B={1}或B={-1,1}.
當(dāng)B={-1}時(shí),
Δ=4a2-4b=0且1+2a+b=0,
解得a=-1,b=1.
當(dāng)B={1}時(shí),
Δ=4a2-4b=0且1-2a+b=0,
解得a=b=1.
當(dāng)B={-1,1}時(shí),
有(-1)+1=2a,(-1)×1=b,
解得a=0,b=-1.
綜上:a=-1,b=1;或 a=b=1;或a=0,b=-1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}中,a2·a8=4a5,等差數(shù)列{bn}中,b4+b6=a5,則數(shù)列{bn}的前9項(xiàng)和S9等于( )
A.9 B.18 C.36 D.72
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“有理數(shù)是無(wú)限不循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無(wú)限不循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是()
A. 使用了歸納推理 B. 使用了類比推理
C. 使用了“三段論”,但大前提錯(cuò)誤 D. 使用了“三段論”,但小前提錯(cuò)誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列能用流程圖表示的是( )
A. 某校學(xué)生會(huì)組織 B. “海爾”集團(tuán)的管理關(guān)系
C. 春種分為三個(gè)工序:平整土地,打畦,插秧 D. 某商場(chǎng)貨物的分布
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①多面體是若干個(gè)平面多邊形所圍成的圖形;
②有一個(gè)平面是多邊形,其余各
面是三角形的幾何體是棱錐;
③有兩個(gè)面是相同邊數(shù)的多邊形,其余各面是梯形的多面體是棱臺(tái).
其中正確命題的個(gè)數(shù)是( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若集合A{1,2,3},且A中至少含有一個(gè)奇數(shù),則這樣的集合A有 ( )
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={1,2},B={x|ax-2=0},若BA,則a的值不可能是 ( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一段“三段論”推理是這樣的:“對(duì)于可導(dǎo)函數(shù)f(x),如果f′(x0)=0,那么x=x0是函數(shù)f(x)的極值點(diǎn);因?yàn)楹瘮?shù)f(x)=x3在x=0處的導(dǎo)數(shù)值f′(0)=0,所以x=0是函數(shù)f(x)=x3的極值點(diǎn).”以上推理中
(1)大前提錯(cuò)誤
(2)小前提錯(cuò)誤
(3)推理形式正確
(4)結(jié)論正確
你認(rèn)為正確的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)是R上的增函數(shù),對(duì)實(shí)數(shù)a,b,若a+b>0,則有( )
A. f(a)+f(b)>f(-a)+f(-b) B. f(a)+f(b)<f(-a)+f(-b)
C. f(a)-f(b)>f(-a)-f(-b) D. f(a)-f(b)<f(-a)-f(-b)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com