求函數(shù)f(x)=2x3-9x+1零點(diǎn)的個(gè)數(shù)為( 。
分析:利用導(dǎo)數(shù)法求出三次函數(shù)的兩個(gè)極值點(diǎn),并判斷兩個(gè)極值的符號(hào)關(guān)系,若同號(hào),則函數(shù)有一個(gè)零點(diǎn),若積為0,則函數(shù)有兩個(gè)零點(diǎn),若異號(hào),則函數(shù)有三個(gè)零點(diǎn).
解答:解:∵函數(shù)f(x)=2x3-9x+1
∴f′(x)=6x2-9
令f′(x)=0
解得x=±
6
2

又∵f(-
6
2
)•f(
6
2
)=-53<0
故函數(shù)f(x)=2x3-9x+1零點(diǎn)的個(gè)數(shù)為3個(gè)
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,熟練掌握三次函數(shù)根的個(gè)數(shù)與極值符號(hào)的關(guān)系是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

利用單調(diào)性的定義證明:函數(shù)f(x)=
2
x-1
在(1,+∞)上是減函數(shù),并求函數(shù)f(x)=
2
x-1
,x∈[2,6]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
2
x-2
|2x-4|+4
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了求函數(shù)f(x)=2x-x2的一個(gè)零點(diǎn),某同學(xué)利用計(jì)算器,得到自變量x和函數(shù)值f(x)的部分對(duì)應(yīng)值(精確到0.01)如下表所示:
x 0.6 1.0 1.4 1.8 2.2 2.6 3.0
f(x) 1.16 1.00 0.68 0.24 -0.24 -0.70 -1.00
則函數(shù)f(x)的一個(gè)零點(diǎn)所在區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={y|y=m2+1,-1≤m≤
2
},求函數(shù)f(x)=2x+2-3•4x,x∈A的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)選做題(請(qǐng)考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長.
(2)已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).請(qǐng)利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案