(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點(diǎn),PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。
(1)利用面面垂直的判定定理來證明。(2)

試題分析:(1)略……………………………………………………………………6分
(2)過點(diǎn)C作CFAB于F,連接PF。則AF=
由(1)知
………………8分
……10分
……12分
點(diǎn)評:對于立體幾何中面面垂直的證明,一般可以通過兩種方法來得到。幾何法,就是面面垂直的判定定理,或者運(yùn)用向量法來得到,同理對于角的求解也是這樣的兩種方法,進(jìn)而反而系得到結(jié)論。屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐中,底面,,,點(diǎn),分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)的中點(diǎn)時,求與平面所成的角的大;
(Ⅲ)是否存在點(diǎn)使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,斜三棱柱中,側(cè)面底面ABC,側(cè)面是菱形,,E、F分別是、AB的中點(diǎn).

求證:(1)EF∥平面;
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在正四棱錐V - ABCD中,P,Q分別為棱VB,VD的中點(diǎn), 點(diǎn)M在邊BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."

(I )求證CQ∥平面PAN;
(II)求證:CQ⊥AP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中點(diǎn).

(Ⅰ)求證:DA⊥平面PAC;
(Ⅱ)點(diǎn)G為線段PD的中點(diǎn),證明CG∥平面PAF;
(Ⅲ)求三棱錐A—CDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平行四邊形ABCD中,AB=1,BD,∠ABD=90°,EBD上的一個動點(diǎn),現(xiàn)將該平行四邊形沿對角線BD折成直二面角ABDC,如圖2所示.

(1)若F、G分別是ADBC的中點(diǎn),且AB∥平面EFG,求證:CD∥平面EFG;
(2)當(dāng)圖1中AEEC最小時,求圖2中二面角AECB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱ABC-A1B1C1中,,的中點(diǎn),中點(diǎn).

(1)求證:∥面;
(2)求直線EF與直線所成角的正切值;
(3)設(shè)二面角的平面角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在正四棱錐中,側(cè)棱的長為所成的角的大小等于

(1)求正四棱錐的體積;
(2)若正四棱錐的五個頂點(diǎn)都在球的表面上,求此球的半徑.

查看答案和解析>>

同步練習(xí)冊答案