在復(fù)平面上,一個(gè)正方形的三個(gè)頂點(diǎn)對應(yīng)的復(fù)數(shù)分別是1+2i,-2+i,0,則第四個(gè)頂點(diǎn)對應(yīng)的復(fù)數(shù)為
 
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由題意畫出圖形,把復(fù)數(shù)對應(yīng)的四個(gè)頂點(diǎn)連線為正方形轉(zhuǎn)化為復(fù)數(shù)相等得答案.
解答: 解:如圖,

設(shè)第四個(gè)點(diǎn)為x+yi,
則1+2i=x+yi-(-2+i)=x+2+(y-1)i,
x+2=1
y-1=2
,x=-1,y=3.
∴第四個(gè)頂點(diǎn)對應(yīng)的復(fù)數(shù)為-1+3i.
故答案為:-1+3i.
點(diǎn)評:本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,2),B(2,7),在x軸上有一點(diǎn)P,使得|PA|+|PB|最小的值為$( 。
A、3
10
B、
34
C、2
10
D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)非負(fù)整數(shù)的有序?qū)Γ╩,n),如果在做m,n的加法運(yùn)算時(shí),不用進(jìn)位,則稱(m,n)為“簡單的”并且稱為有序?qū)Γ╩,n)的和.則和為1968的“簡單的”非負(fù)整數(shù)有序?qū)Φ膫(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用函數(shù)的圖象討論函數(shù)y=2(x-1)2-1的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B兩點(diǎn)分別在兩條互相垂直的直線2x-y=0和x+ay=0上,且AB線段的中點(diǎn)為P(0,
10
a
),則線段AB的長為( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為a元,如果他賣出該產(chǎn)品的單價(jià)為m元,則他的滿意度為
m
m+a
;如果他買進(jìn)該產(chǎn)品的單價(jià)為n元,則他的滿意度為
n
n+a
.如果一個(gè)人對兩種交易(賣出或買進(jìn))的滿意度分別為h1和h2,則他對這兩種交易的綜合滿意度為
h1h2
.現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為mAm元和mB元,甲買進(jìn)A與賣出B的綜合滿意度為h,乙賣出A與買進(jìn)B的綜合滿意度為h
(1)求h和h關(guān)于mA、mB的表達(dá)式;當(dāng)mA=
3
5
mB時(shí),求證:h=h;
(2)設(shè)mA=
3
5
mB,當(dāng)mA、mB分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,-
π
2
<φ<
π
2
),其部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將f(x)圖象上任意一點(diǎn)的橫坐標(biāo)縮短為原來的
1
2
(縱坐標(biāo)不變),再向右平移m(m>0)個(gè)單位,得到的函數(shù)g(x)的圖象,若g(x)的圖象關(guān)于y軸對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(x-m)(x-n)=(x-a)(x-b)+1,若m>n且a>b,則a,b,m,n的大小順序是( 。
A、m>n>a>b
B、a>m>n>b
C、m>a>b>n
D、a>b>m>n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=sinxcosx,則f(-
π
6
)=
 

查看答案和解析>>

同步練習(xí)冊答案