已知數(shù)列的前n項(xiàng)和,則的值為 (     )
A.20 B.21   C.22     D.23
B

試題分析:由題意,得=21,故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{}是等差數(shù)列,其中每一項(xiàng)及公差均不為零,設(shè)=0()是關(guān)于的一組方程.
(1)求所有這些方程的公共根;
(2)設(shè)這些方程的另一個(gè)根為,求證,,,…, ,…也成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果數(shù)列同時(shí)滿足:(1)各項(xiàng)均不為,(2)存在常數(shù)k, 對(duì)任意都成立,則稱這樣的數(shù)列為“類等比數(shù)列” .由此等比數(shù)列必定是“類等比數(shù)列” .問(wèn):
(1)各項(xiàng)均不為0的等差數(shù)列是否為“類等比數(shù)列”?說(shuō)明理由.
(2)若數(shù)列為“類等比數(shù)列”,且(a,b為常數(shù)),是否存在常數(shù)λ,使得對(duì)任意都成立?若存在,求出λ;若不存在,請(qǐng)舉出反例.
(3)若數(shù)列為“類等比數(shù)列”,且(a,b為常數(shù)),求數(shù)列的前n項(xiàng)之和;數(shù)列的前n項(xiàng)之和記為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)滿足f(x+1)=+f(x),x∈R,且f(1)=,則數(shù)列{f(n)}(n∈N*)的前20項(xiàng)的和為(  )
A.305B.315C.325D.335

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,且滿足:, N*.
(1)求數(shù)列的通項(xiàng)公式;
(2)若存在 N*,使得,,成等差數(shù)列,試判斷:對(duì)于任意的N*,且,,,是否成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013·安徽高考)設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對(duì)任意n∈N*,函數(shù)f(x)=x+an+1cos x-an+2sin x滿足f′=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1) 為等差數(shù)列的前項(xiàng)和,,求
(2)在等比數(shù)列中,若,求首項(xiàng)和公比

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列的前項(xiàng)和,且的最大值為8,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列,的前項(xiàng)和分別為,,若=,則=時(shí)(   )
A.2B.6C.無(wú)解D.無(wú)數(shù)多個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案