試證明以下結(jié)果:①如圖3-1,一個(gè)Dandelin球與圓錐面的交線為一個(gè)圓,并與圓錐的底面

平行,記這個(gè)圓所在平面為π′;②如果平面π與平面π′的交線為m,在圖3-1中橢圓上任取一點(diǎn)A,該Dandelin球與平面π的切點(diǎn)為F,則點(diǎn)A到點(diǎn)F的距離與點(diǎn)A到直線m的距離比是小于1的常數(shù)e.(稱點(diǎn)F為這個(gè)橢圓的焦點(diǎn),直線m為橢圓的準(zhǔn)線,常數(shù)e為離心率)

圖3-1

思路分析:離心率e=,說(shuō)明cosβ=1,y<cosα即可,這可以通過(guò)α與β的關(guān)系加以說(shuō)明.

證明:略.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試證明以下結(jié)果:①如圖,一個(gè)Dandelin球與圓錐面的交線為一個(gè)圓,并與圓錐的底面平行,記這個(gè)圓所在平面為π′;②如果平面π與平面π′的交線為m,在圖3-1中橢圓上任取一點(diǎn)A,該Dandelin球與平面π的切點(diǎn)為F,則點(diǎn)A到點(diǎn)F的距離與點(diǎn)A到直線m的距離比是小于1的常數(shù)e.(稱點(diǎn)F為這個(gè)橢圓的焦點(diǎn),直線m為橢圓的準(zhǔn)線,常數(shù)e為離心率)

圖3-1

查看答案和解析>>

同步練習(xí)冊(cè)答案