如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點(diǎn),且BF平面AC E.

(1)求證:AEBE;

(2)求三棱錐D—AEC的體積;

(3)求二面角A—CD—E的余弦值.

 

【答案】

(1)空間中的線線垂直的證明,一般主要是通過(guò)線面垂直的性質(zhì)定理來(lái)加以證明。

(2)

(3)

【解析】

試題分析:解:(1)ABCD是矩形,BCAB,平面EAB平面ABCD,平面EAB平面ABCD=AB,BC平面ABCD,BC平面EAB,

EA平面EAB,BCEA ,BF平面ACE,EA平面ACE,BF EA, BC BF=B,BC平面EBC,BF平面EBC,EA平面EBC ,BE平面EBC, EA BE。 

(2) EA BE,AB=

 ,設(shè)O為AB的中點(diǎn),連結(jié)EO,

∵AE=EB=2,EOAB,平面EAB平面ABCD,EO平面ABCD,即EO為三棱錐E—ADC的高,且EO=,

(3)以O(shè)為原點(diǎn),分別以O(shè)E、OB所在直線為,如圖建立空間直角坐標(biāo)系,

,

 ,由(2)知是平面ACD的一個(gè)法向量,設(shè)平面ECD的法向量為,則,即,令,則,所以,設(shè)二面角A—CD—E的平面角的大小為,由圖得

所以二面角A—CD—E的余弦值為。

考點(diǎn):二面角的平面角,線面垂直

點(diǎn)評(píng):解決的關(guān)鍵是熟練的根據(jù)線面垂直的性質(zhì)定理,以及建立直角坐標(biāo)系來(lái)求解二面角的 平面角是常用 方法之一,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱錐E-ABCD中,底面ABCD為正方形,EC⊥平面ABCD,AB=
2
,CE=1,G為AC與BD交點(diǎn),F(xiàn)為EG中點(diǎn),
(Ⅰ)求證:CF⊥平面BDE;
(Ⅱ)求二面角A-BE-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)二模)如圖,四棱錐E-ABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD.
(Ⅰ)求證:AB⊥ED;
(Ⅱ)線段EA上是否存在點(diǎn)F,使DF∥平面BCE?若存在,求出
EFEA
;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐 E-ABCD中,EA⊥平面ABCD,AB⊥AD,AB∥DC,AD=AE=CD=2AB,M是EC的中點(diǎn).
(I)求證:平面BCE⊥平面DCE;
(II)求銳二面角M-BD-C平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四棱錐E-ABCD中,面ABE⊥面ABCD,
底面ABCD是直角梯形,側(cè)面ABE是等腰直角三角形.且AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(1)判斷AB與DE的位置關(guān)系;
(2)求三棱錐C-BDE的體積;
(3)若點(diǎn)F是線段EA上一點(diǎn),當(dāng)EC∥平面FBD時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省淄博一中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

如圖,四棱錐 E-ABCD中,EA⊥平面ABCD,AB⊥AD,AB∥DC,AD=AE=CD=2AB,M是EC的中點(diǎn).
(I)求證:平面BCE⊥平面DCE;
(II)求銳二面角M-BD-C平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案