20.已知函數(shù)$y=lg(x-2)+\sqrt{3-x}$,則其定義域為(2,3].

分析 根據(jù)對數(shù)函數(shù)以及二次根式的性質求出函數(shù)的定義域即可.

解答 解:由題意得:$\left\{\begin{array}{l}{x-2>0}\\{3-x≥0}\end{array}\right.$,
解得:2<x≤3,
故答案為:(2,3].

點評 本題考查了對數(shù)函數(shù)以及二次根式的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={x|(x-1)(3-x)<0},B={x|-3≤x≤3},則A∩B=( 。
A.(-1,2]B.(1,2]C.[-2,1)D.[-3,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.點M是拋物線x2=2py(p>0)的對稱軸與準線的交點,點F為拋物線的焦點,P在拋物線上,在△PFM中,sin∠PFM=λsin∠PMF,則λ的最大值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知tanθ=4,則$\frac{sinθ+cosθ}{17sinθ}+\frac{{si{n^2}θ}}{4}$的值為( 。
A.$\frac{14}{68}$B.$\frac{21}{68}$C.$\frac{68}{14}$D.$\frac{68}{21}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|
(1)當a=2時,求滿足f(x)≥g(2)的x的值.
(2)當x∈R時,恒有f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是增函數(shù).令a=f(sin50°),b=f[cos(-50°)],c=f(-tan50°),則( 。
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,則f(x)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|-3≤x≤2},集合B={x|1-m≤x≤3m-1}.
(1)當m=3時,求A∩B,A∪B;   
(2)若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,x軸被曲線C2:y=x2-b截得的線段長等于C1的短軸長,C2與y軸的交點為M,過坐標原點O的直線l與C2相交于點A、B,直線MA,MB分別與C1相交于點D、E.
(Ⅰ)求C1、C2的方程;
(Ⅱ)求證:MA⊥MB:
(Ⅲ)記△MAB,△MDE的面積分別為S1,S2,若$\frac{{S}_{1}}{{S}_{2}}$=λ,求λ的最小值.

查看答案和解析>>

同步練習冊答案