【題目】已知向量,,函數(shù)
(1)求函數(shù)的單調遞減區(qū)間;
(2)若,求的值.
【答案】(1),;(2)
【解析】
(1)由向量數(shù)量積和三角函數(shù)的誘導公式及輔助角公式化簡得f(x)=2sin(2x﹣),由正弦的單調性即可得到;
(2)由,得sin(α﹣)=,再由誘導公式和倍角公式化簡可得sin(2α+,代入可得.
(1)∵f(x)==2sin(x﹣)sin(x+)+2sinxcosx
=2sin(x﹣)sin(x﹣+)+2sinxcosx
=2sin(x﹣)cos(x﹣)+2sinxcosx
=sin(2x﹣)+sin2x
=﹣cos2x+sin2x
=2(sin2x﹣cos2x)
=2sin(2x﹣),
由+2kπ≤2x﹣≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,
所以f(x)的單調遞減區(qū)間為.
(2)∵f()=,∴2sin(α﹣)=,∴sin(α﹣)=,
∴
.
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的個數(shù)為( )
①“都有”的否定是“使得”;
②“”是“”成立的充分條件;
③命題“若,則方程有實數(shù)根”的否命題;
④冪函數(shù)的圖像可以出現(xiàn)在第四象限.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】千百年來,我國勞動人民在生產實踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結了豐富的“看云識天氣”的經驗,并將這些經驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證“日落云里走,雨在半夜后”,觀察了所在地區(qū)A的100天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣 日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | 25 | 5 |
未出現(xiàn) | 25 | 45 |
臨界值表 | ||||
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
并計算得到,下列小波對地區(qū)A天氣判斷不正確的是( )
A.夜晚下雨的概率約為
B.未出現(xiàn)“日落云里走”夜晚下雨的概率約為
C.有的把握認為“‘日落云里走’是否出現(xiàn)”與“當晚是否下雨”有關
D.出現(xiàn)“日落云里走”,有的把握認為夜晚會下雨
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在定義域內的某個區(qū)間上是增函數(shù),且在上也是增函數(shù),則稱是上的“完美增函數(shù)”.已知,.
(1)判斷函數(shù)是否為區(qū)間上的“完美增函數(shù)”;
(2)若函數(shù)是區(qū)間上的“完美增函數(shù)”,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,圖中直棱柱的底面是菱形,其中.又點分別在棱上運動,且滿足:,.
(1)求證:四點共面,并證明∥平面.
(2)是否存在點使得二面角的余弦值為?如果存在,求出的長;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程為,直線:,直線:.以極點為原點,極軸為軸的正半軸建立平面直角坐標系.
(1)求直線,的直角坐標方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點,直線與曲線C交于,兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調性;
(2)若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖像如圖所示.
(1)求的解析式;
(2)求的單調遞減區(qū)間;
(3)不畫圖,說明函數(shù)的圖像經過怎樣的變換可得到的圖像.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內有兩個不同的極值點.
(1)求實數(shù)a的取值范圍;
(2)設兩個極值點分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com