分析 問題轉化為k≤$\frac{{e}^{x}}{2x}$在(0,+∞)恒成立,令g(x)=$\frac{{e}^{x}}{2x}$,(x>0),根據(jù)函數(shù)的單調性求出g(x)的最小值,求出k的范圍即可.
解答 解:由函數(shù)f(x)=ex-kx2,x∈R,
則f′(x)=ex-2kx≥0在(0,+∞)恒成立,
故k≤$\frac{{e}^{x}}{2x}$在(0,+∞)恒成立,
令g(x)=$\frac{{e}^{x}}{2x}$,(x>0),
g′(x)=$\frac{{e}^{x}(x-1)}{{2x}^{2}}$,
令g′(x)>0,解得:x>1,
令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)遞減,在(1,+∞)遞增,
故g(x)min=g(1)=$\frac{e}{2}$,
故k≤$\frac{e}{2}$,
故答案為:(-∞,$\frac{e}{2}$].
點評 本題考查了函數(shù)恒成立問題,考查導數(shù)的應用以及轉化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com