設(shè)函數(shù),其中為實數(shù),若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍.

a∈(e,+∞)

解析試題分析:分別利用導(dǎo)數(shù)求出單調(diào)區(qū)間與上的最小值,與給定的上是單調(diào)減函數(shù),且上有最小值相結(jié)合,得出關(guān)于的關(guān)系式,可得的取值范圍.
解:令,
考慮到f(x)的定義域為(0,+∞),故a>0,進而解得x>a-1,即f(x)在(a-1,+∞)上是單調(diào)減函數(shù),
同理,f(x)在(0,a-1)上是單調(diào)增函數(shù).
由于f(x)在(1,+∞)上是單調(diào)減函數(shù),故(1,+∞)(a-1,+∞),從而a-1≤1,即a≥1,
令g'(x)=ex-a=0,得
時, ;當x>時,
又g(x)在(1,+∞)上有最小值,所以,
即a>e.綜上,有a∈(e,+∞).
考點:利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,
(1)若的單調(diào)減區(qū)間是,求實數(shù)a的值;
(2)若對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)設(shè)有兩個極值點, 且.若恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若上的最小值記為.
(1)求;
(2)證明:當時,恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)).
(1)若是函數(shù)的一個極值點,求的值;
(2)當時,試判斷的單調(diào)性;
(3)若對任意的,使不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中.
(1)討論在其定義域上的單調(diào)性;
(2)當時,求取得最大值和最小值時的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) 
(1) 當時,求函數(shù)的極值;
(2)若,證明:在區(qū)間內(nèi)存在唯一的零點;
(3)在(2)的條件下,設(shè)在區(qū)間內(nèi)的零點,判斷數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在集合M上的函數(shù).若區(qū)間D⊆M,且對任意x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)判斷f(x)=x-1在區(qū)間[-2,1]上是否封閉,并說明理由;
(2)若函數(shù)g(x)=在區(qū)間[3,10]上封閉,求實數(shù)a的取值范圍;
(3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z,且a≠b)上封閉,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=+ln x(a≠0,a∈R).求函數(shù)f(x)的極值和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值.
(1)求、的值;(2)求的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案