已知點A(2,3),B(-3,-2),若直線l過點P(1,1)與線段AB相交,則直線l的斜率k的取值范圍是
 
考點:直線的斜率
專題:直線與圓
分析:畫出圖形,由題意得所求直線l的斜率k滿足 k≥kPB 或 k≤kPA,用直線的斜率公式求出kPB 和kPA 的值,求出直線l的斜率k的取值范圍.
解答: 解:如圖所示:由題意得,所求直線l的斜率k滿足 k≥kPB 或 k≤kPA,
即 k≥
1+2
1+3
=
3
4
,或 k≤
1-3
1-2
=2,∴k≤
3
4
,或k≥2,
即直線的斜率的取值范圍是k≤
3
4
,或k≥2.
故答案為:k≤
3
4
,或k≥2.
點評:本題考查直線的斜率公式的應用,體現(xiàn)了數(shù)形結合的數(shù)學思想,解題的關鍵是利用了數(shù)形結合的思想,解題過程較為直觀,本題類似的題目比較多.可以移動一個點的坐標,變式出其他的題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=(
1
2
x+1的圖象必經(jīng)過點(  )
A、(0,2)
B、(0,1)
C、(-1,0)
D、(1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(
π
2
+θ)=
4
5
,θ∈(0,π),則cos(
6
-θ)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
2
-2
(x3+1)dx
=( 。
A、2B、4C、8D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=sin(2x-
π
6
)的圖象,可以將函數(shù)y=cos2x的圖象( 。
A、向右平移
π
6
個單位長度
B、向右平移
π
3
個單位長度
C、向左平移
π
6
個單位長度
D、向左平移
π
3
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊過點P(-12,5),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U=R,集合A={x|
1
x+6
<1}
,則∁UA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x≠1,x2-x≠0”的否定是:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求PB與平面ABC所成角的大;
(2)求點C到平面APB的距離.

查看答案和解析>>

同步練習冊答案