8.已知P是橢圓$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1和雙曲線x2-y2=2的一個交點(diǎn),若F1、F2分別是橢圓的左、右焦點(diǎn),則cos∠F1PF2=90°.

分析 不妨設(shè)點(diǎn)P在第一象限,|F1F2|=4.則|PF1|+|PF2|=2$\sqrt{6}$,|PF1|-|PF2|=2$\sqrt{2}$,可得|PF1|,|PF2|.再利用余弦定理即可得出.

解答 解:不妨設(shè)點(diǎn)P在第一象限,
|F1F2|=4.
則|PF1|+|PF2|=2$\sqrt{6}$,|PF1|-|PF2|=2$\sqrt{2}$,
∴|PF1|=$\sqrt{6}$$+\sqrt{2}$,|PF2|=$\sqrt{6}$-$\sqrt{2}$.
∴cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$=$\frac{(\sqrt{6}+\sqrt{2})^{2}+(\sqrt{6}-\sqrt{2})^{2}-{4}^{2}}{2(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}$=0,
∴∠F1PF2=90°.
故答案為:90°.

點(diǎn)評 本題考查了橢圓與雙曲線的定義、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:|x-2|>1;命題q:x2-(2a+1)x+a(a+1)≤0.若?p是?q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,橢圓的左、右焦點(diǎn)分別是F1,F(xiàn)2,且|F1F2|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P為橢圓上一點(diǎn),PF1與y軸相交于Q,且$\overrightarrow{F_1P}$=2$\overrightarrow{F_1Q}$.若PF1與橢圓相交于另一點(diǎn)R,求|PR|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,若$sinA=\frac{{2\sqrt{2}}}{3}$,a=2,ccosB+bcosC=2acosB,則b的值為( 。
A.$2\sqrt{6}$B.$\frac{{3\sqrt{2}}}{4}$C.$\frac{{3\sqrt{3}}}{4}$D.$\frac{{3\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距是2,離心率是$\frac{1}{2}$.
(1)求橢圓的方程;
(2)若直線l:y=x+1與橢圓C相交于點(diǎn)P,Q,試求出線段PQ的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的四個頂點(diǎn)是A1,A2,B1,B2,△A2B1B2是邊長為2的正三角形.
(1)求橢圓的方程;
(2)若G是橢圓上在第一象限內(nèi)的動點(diǎn),直線B1G交線段A2B2于點(diǎn)E,求$\frac{|G{B}_{1}|}{|E{B}_{1}|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知兩定點(diǎn)A(-3,0),B(3,0),如果動點(diǎn)P滿足|PA|=2|PB|,則點(diǎn)P的軌跡所包圍的圖形的面積等于(  )
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為(  )
A.$\frac{17\sqrt{17}}{6}$πB.34πC.17πD.$\frac{17}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別是F1,F(xiàn)2,上頂點(diǎn)為B點(diǎn),右焦點(diǎn)F2到直線F1B的距離為$\sqrt{3}$,橢圓M的離心率為e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)O作兩條互相垂直的射線,與橢圓M交于P、Q兩點(diǎn),問:點(diǎn)O到直線PQ的距離是否為定值?若是,試求出這個定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案