已知
,點
在曲線
上
,
(Ⅰ)(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)設(shè)數(shù)列
的前n項和為
,若對于任意的
,使得
恒成立,求最小正整數(shù)t的值.
(1)
(2)2.
試題分析:(1)數(shù)列是點函數(shù),代入函數(shù)解析式,可判斷數(shù)列為等差數(shù)列;(2)由通項公式裂項變形,利用錯位相消法求和.
試題解析:(1)由題意得:
,
,∴數(shù)列
是等差數(shù)列,首項
,公差d=4,
∴
,
;
(2)
,
由
,
∵
, ∴
,
,解得
,∴t的最小正整數(shù)為2 .
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)函數(shù)
(Ⅰ)證明對每一個
,存在唯一的
,滿足
;
(Ⅱ)由(Ⅰ)中的
構(gòu)成數(shù)列
,判斷數(shù)列
的單調(diào)性并證明;
(Ⅲ)對任意
,
滿足(Ⅰ),試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若數(shù)列
的前
項和為
,對任意正整數(shù)
都有
,記
.
(1)求
,
的值;
(2)求數(shù)列
的通項公式;
(3)若
求證:對任意
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
數(shù)列
的前
項和為
,且
是
和
的等差中項,等差數(shù)列
滿足
,
.
(1)求數(shù)列
、
的通項公式;
(2)設(shè)
,數(shù)列
的前
項和為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
為數(shù)列
的前
項和,對任意的
,都有
(
為正常數(shù)).
(1)求證:數(shù)列
是等比數(shù)列;
(2)數(shù)列
滿足
求數(shù)列
的通項公式;
(3)在滿足(2)的條件下,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
數(shù)列
滿足
表示
前n項之積,則
=_____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在等差數(shù)列
中,
,則數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
記等差數(shù)列
的前
項和為
,若
,則直線
的斜率為=
.
查看答案和解析>>