(B題)已知圓C的方程為(x-1)2+y2=9,點p為圓上一動點,定點A(-1,0),線段AP的垂直平分線與直線CP交于點M,則為點M的軌跡為( 。
分析:由題目給出的條件作出圖形,結(jié)合線段垂直平分線上的點到線段兩端點的距離相等及橢圓定義得到正確答案.
解答:精英家教網(wǎng)解:圓C:(x-1)2+y2=9,圓心為(1,0),半徑為3,如圖,
因為M是線段AP的垂直平分線與CP的交點,所以|MA|=|MP|,
所以|MA|+|MC|=|MC|+|MP|=|PC|=3.
而|AC|=2,|MA|+|MC|>|AC|.
所以由橢圓定義知,M的軌跡是以A,C為焦點的橢圓.
故選A.
點評:本題考查了橢圓的定義,考查了數(shù)學(xué)轉(zhuǎn)化思想及數(shù)形結(jié)合的解題思想,是基礎(chǔ)的定義題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓C的方程為:x2+y2-6x-8y+21=0,平面上有A(1,0)和B(-1,0)兩點.
(I)在圓上求一點Q,使△ABQ的面積最大,并求出最大面積;
(II)在圓上求一點P,使|AP|2+|BP|2取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知圓C的方程為x2+y2=4.

(1)求過點P(1,2)且與圓C相切的直線l的方程;

(2)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

(B題)已知圓C的方程為(x-1)2+y2=9,點p為圓上一動點,定點A(-1,0),線段AP的垂直平分線與直線CP交于點M,則為點M的軌跡為


  1. A.
    橢圓
  2. B.
    雙曲線
  3. C.
    拋物線
  4. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)過圓C上一動點M作平行于x軸的直線m,設(shè)m與y軸的交點為N,若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

(文)(本小題共13分)已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)圓C上一動點M(x0,y0),=(0,y0),若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

同步練習(xí)冊答案