分析 利用無窮遞縮等比數(shù)列前n項和公式,建立方程,即可得出結論.
解答 解:∵等比數(shù)列{an}首項為sinα,公比為cosα,$\underset{lim}{n→∞}$(a1+a2+…+an)=-$\sqrt{3}$,
∴$\frac{sinα}{1-cosα}$=-$\sqrt{3}$,
∴tan$\frac{α}{2}$=-$\sqrt{3}$,
∴$\frac{α}{2}$=-$\frac{π}{3}$+kπ,
∴α=-$\frac{2π}{3}$+2kπ,k∈Z.
故答案為:-$\frac{2π}{3}$+2kπ,k∈Z.
點評 本題考查數(shù)列的極限的應用,解題時要認真審題,仔細解答,注意無窮遞縮等比數(shù)列前n項和公式的靈活運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不增不減 | B. | 增多了 | ||
C. | 減少了 | D. | 以原來的成本大小有關 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com