設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,則下列結(jié)論正確的是(  )

A.S2 011=2 011,a2 007<a5                   B.S2 011=2 011,a2 007>a5

C.S2 011=-2 011,a2 007≤a5                 D.S2 011=-2 011,a2 007≥a5

 

【答案】

A

【解析】

試題分析:令

,在R上單調(diào)遞增且連續(xù)的函數(shù)所以函數(shù)只有唯一的零點(diǎn),從而可得,同理

∵(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1兩式相加整理可得,

可得>0,由等差數(shù)列的性質(zhì)可得

考點(diǎn):函數(shù)性質(zhì)與等差數(shù)列及性質(zhì)

點(diǎn)評(píng):本題的入手點(diǎn)在于通過已知條件的兩數(shù)列關(guān)系式構(gòu)造兩函數(shù),借助于函數(shù)單調(diào)性得到數(shù)列中某些特定項(xiàng)的范圍,再結(jié)合等差數(shù)列中的相關(guān)性質(zhì)即可求解,本題難度很大

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•山東)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案