sin(
π
2
+α)+cos(α-
π
2
)=
7
5
,則sin(
2
+α)+cos(α-
2
)
=(  )
A、-
3
5
B、
4
5
C、-
7
5
D、
7
5
分析:通過(guò)誘導(dǎo)公式化簡(jiǎn)sin(
π
2
+α)+cos(α-
π
2
),求得sinα+cosα的值,再化簡(jiǎn)sin(
2
+α)+cos(α-
2
)得出答案.
解答:解:原式=cosα+sinα=
7
5
,
sin(
2
+α)+cos(α-
2
)=-cosα-sinα=-
7
5

故答案選C
點(diǎn)評(píng):本題主要考查誘導(dǎo)公式的運(yùn)用.在做題時(shí)要特別注意函數(shù)的正負(fù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,已知a2-c2=b2-
2
6
bc
3

(Ⅰ)求tan2A;
(Ⅱ)若sin(
π
2
+B)=
2
2
3
,c=2
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(
π
2
+x)+sin(π-x)=
1
3
,則sinx•cosx的值為( 。
A、-
4
9
B、
4
9
C、-
8
9
D、
8
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)若sin(
π2
+α)=m
,則cosα=
m
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們可以證明:已知sinθ=t(|t|≤1),則sin
θ
2
至多有4個(gè)不同的值.
(1)當(dāng)t=
3
2
時(shí),寫(xiě)出sin
θ
2
的所有可能值;
(2)設(shè)實(shí)數(shù)t由等式log
1
2
2
(t+1)+a•log
1
2
(t+1)+b=0
確定,若sin
θ
2
總共有7個(gè)不同的值,求常數(shù)a、b的取值情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin(
π
2
-α)=log27
1
9
,且α∈(-π,0),則cos(π+α)的值為( 。
A、-
2
3
B、
2
3
C、±
2
3
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案