【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過(guò)200度的部分按0.5元/度收費(fèi),超過(guò)200度但不超過(guò)400度的部分按0.8元/度收費(fèi),超過(guò)400度的部分按1.0元/度收費(fèi).
(1)求某戶居民用電費(fèi)用y(單位:元)關(guān)于月用電量x(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過(guò)抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過(guò)260元的點(diǎn)80%,求a,b的值;
(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,記Y為該居民用戶1月份的用電費(fèi)用,求Y的分布列和數(shù)學(xué)期望.

【答案】
(1)解:當(dāng)0≤x≤200時(shí),y=0.5x;

當(dāng)200<x≤400時(shí),y=0.5×200+0.8×(x﹣200)=0.8x﹣60,

當(dāng)x>400時(shí),y=0.5×200+0.8×200+1.0×(x﹣400)=x﹣140,

所以y與x之間的函數(shù)解析式為:y=


(2)解:由(1)可知:當(dāng)y=260時(shí),x=400,則P(x≤400)=0.80,

結(jié)合頻率分布直方圖可知:0.1+2×100b+0.3=0.8,100a+0.05=0.2,

∴a=0.0015,b=0.0020


(3)解:由題意可知X可取50,150,250,350,450,550.

當(dāng)x=50時(shí),y=0.5×50=25,∴P(y=25)=0.1,

當(dāng)x=150時(shí),y=0.5×150=75,∴P(y=75)=0.2,

當(dāng)x=250時(shí),y=0.5×200+0.8×50=140,∴P(y=140)=0.3,

當(dāng)x=350時(shí),y=0.5×200+0.8×150=220,∴P(y=220)=0.2,

當(dāng)x=450時(shí),y=0.5×200+0.8×200+1.0×50=310,∴P(y=310)=0.15,

當(dāng)x=550時(shí),y=0.5×200×0.8×200+1.0×150=410,∴P(y=410)=0.05.

故Y的概率分布列為:

Y

25

75

140

220

310

410

P

0.1

0.2

0.3

0.2

0.15

0.05

所以隨機(jī)變量Y的數(shù)學(xué)期望

EY=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.5


【解析】(1)利用分段函數(shù)的性質(zhì)即可得出.(2)利用(1),結(jié)合頻率分布直方圖的性質(zhì)即可得出.(3)由題意可知X可取50,150,250,350,450,550.結(jié)合頻率分布直方圖的性質(zhì)即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息,以及對(duì)離散型隨機(jī)變量及其分布列的理解,了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 設(shè)函數(shù)g(n)= ,若bn=g(2n+4),n∈N* , 則數(shù)列{bn}的前n(n≥2)項(xiàng)和Sn等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)正方體ABCD﹣A1B1C1D1的頂點(diǎn)A的平面α與平面CB1D1平行,設(shè)α∩平面ABCD=m,α∩平面ABB1A1=n,那么m,n所成角的余弦值等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4名同學(xué)去參加校學(xué)生會(huì)活動(dòng),共有甲、乙兩類活動(dòng)可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動(dòng),擲出點(diǎn)數(shù)為1或2的人去參加甲類活動(dòng),擲出點(diǎn)數(shù)大于2的人去參加乙類活動(dòng).
(1)求這4個(gè)人中恰有2人去參加甲類活動(dòng)的概率;
(2)用X,Y分別表示這4個(gè)人中去參加甲、乙兩類活動(dòng)的人數(shù).記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖沖之之子祖暅?zhǔn)俏覈?guó)南北朝時(shí)代偉大的科學(xué)家,他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算的原理:“冪勢(shì)既同,則積不容異”.意思是,如果兩個(gè)等高的幾何體在同高處截得的截面面積恒等,那么這兩個(gè)幾何體的體積相等.此即祖暅原理.利用這個(gè)原理求球的體積時(shí),需要構(gòu)造一個(gè)滿足條件的幾何體,已知該幾何體三視圖如圖所示,用一個(gè)與該幾何體的下底面平行相距為h(0<h<2)的平面截該幾何體,則截面面積為(
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若滿足g(x)=﹣1的x有四個(gè),則t的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣x+2
(Ⅰ)求函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)令g(x)= +lnx,若函數(shù)y=g(x)在(e,+∞)內(nèi)有極值,求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,對(duì)任意t∈(1,+∞),s∈(0,1),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的實(shí)義域?yàn)镽,其圖象關(guān)于點(diǎn)(﹣1,0)中心對(duì)稱,其導(dǎo)函數(shù)為f′(x),當(dāng)x<﹣1時(shí),(x+1)[f(x)+(x+1)f′(x)]<0.則不等式xf(x﹣1)>f(0)的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)
C.(﹣1,1)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=2時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣1|,當(dāng)x∈R時(shí),f(x)+g(x)≥3,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案