10.已知函數(shù)f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x+1,則關(guān)于x的不等式f(2x+1)+f(x+1)>2的解集為( 。
A.(-$\frac{1}{2017}$,+∞)B.(-2017,+∞)C.(-$\frac{2}{3}$,+∞)D.(-2,+∞)

分析 可先設(shè)g(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,根據(jù)要求的不等式,可以判斷g(x)的奇偶性及其單調(diào)性,容易求出g(-x)=-g(x),通過求g′(x),并判斷其符號(hào)可判斷其單調(diào)性,從而原不等式可變成,g(2x+1)>g(-x-1),而根據(jù)g(x)的單調(diào)性即可得到關(guān)于x的一元一次不等式,解該不等式即得原不等式的解集.

解答 解:設(shè)g(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,
則g(-x)=2017-x+log2017($\sqrt{{x}^{2}+1}$-x)-2017x=-g(x),
g′(x)=2017xln2017+$\frac{1}{ln2017•\sqrt{{x}^{2}+1}}$+2017-xln2017>0,
可得g(x)在R上單調(diào)遞增;
∴由f(2x+1)+f(x+1)>2得,g(2x+1)+1+g(x+1)+1>2;
∴g(2x+1)>-g(x+1),即為g(2x+1)>g(-x-1),
得2x+1>-x-1,
解得x>-$\frac{2}{3}$,
∴原不等式的解集為(-$\frac{2}{3}$,+∞).
故選:C.

點(diǎn)評(píng) 本題考查對(duì)數(shù)的運(yùn)算,平方差公式,奇函數(shù)的判斷方法,根據(jù)函數(shù)導(dǎo)數(shù)符號(hào)判斷函數(shù)單調(diào)性的方法,函數(shù)單調(diào)性定義的運(yùn)用,并注意正確求導(dǎo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=cos2x+sinxcosx-$\frac{1}{2}$,x∈R.
(Ⅰ)求函數(shù)f(x)的圖象的對(duì)稱軸方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)y=sin(2x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{3}$個(gè)單位,所得函數(shù)的解析式為( 。
A.$y=sin({2x+\frac{5π}{6}})$B.y=-cos2xC.y=cos2xD.$y=sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ex-$\frac{a}{x}$,a,f(x)為實(shí)數(shù).
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(0,+∞)上存在極值點(diǎn),且極值大于ln4+2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{m}$-y2=1的一個(gè)焦點(diǎn)與拋物線y2=8x焦點(diǎn)相同,則此雙曲線的離心率為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{5}}{5}$C.2D.$\frac{2\sqrt{15}}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,四棱錐P-ABCD的底面為直角梯形,AB⊥AD,CD⊥AD,CD=2AB.點(diǎn)E是PC的中點(diǎn).
(Ⅰ)求證:BE∥平面PAD;
(Ⅱ)已知平面PCD⊥底面ABCD,且PC=DC.在棱PD上是否存在點(diǎn)F,使CF⊥PA?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:x2=2py(p>0),圓O:x2+y2=1.
(1)若拋物線C的焦點(diǎn)F在圓上,且A為 C和圓 O的一個(gè)交點(diǎn),求|AF|;
(2)若直線l與拋物線C和圓O分別相切于點(diǎn)M,N,求|MN|的最小值及相應(yīng)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=sin(x+φ)是偶函數(shù),則φ可取一個(gè)值為( 。
A.B.-$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,三棱錐P-ABC中,△ABC為等腰直角三角形,AB=BC=2,PA=PB=PC=$\sqrt{6}$.
(1)求證:平面PAC⊥平面ABC;
(2)求平面PBC和平面ABC夾角的正切值.

查看答案和解析>>

同步練習(xí)冊答案