【題目】如圖,經(jīng)過村莊A有兩條夾角60°為的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個倉庫M,N(異于村莊A),要求PM=PN=MN=2(單位:千米).記∠AMN=θ.
(1)將AN,AM用含θ的關(guān)系式表示出來;
(2)如何設計(即AN,AM為多長時),使得工廠產(chǎn)生的噪聲對居民的影響最。垂S與村莊的距離AP最大)?
【答案】
(1)解:∠AMN=θ,在△AMN中,由正弦定理得: = =
所以AN= ,AM=
(2)解:AP2=AM2+MP2﹣2AMMPcos∠AMP
= sin2(θ+60°)+4﹣ sin(θ+60°)cos(θ+60°)
= [1﹣cos(2θ+120°)]﹣ sin(2θ+120°)+4
= [ sin(2θ+120°)+cos(2θ+120°)]+
= ﹣ sin(2θ+150°),θ∈(0°,120°)(其中利用誘導公式可知sin(120°﹣θ)=sin(θ+60°))
當且僅當2θ+150°=270°,即θ=60°時,工廠產(chǎn)生的噪聲對居民的影響最小,此時AN=AM=2.
【解析】(1)根據(jù)正弦定理,即可θ表示出AN,AM;(2)設AP2=f(θ),根據(jù)三角函數(shù)的公式,以及輔助角公式即可化簡f(θ);根據(jù)三角函數(shù)的圖象和性質(zhì),即可求出函數(shù)的最值.
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)
(1)若函數(shù)是偶函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)且任意都有恒成立,求實數(shù)的取值范圍;
(3)若,求在上的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|. (Ⅰ)若不等式f(x)≤2的解集為[0,4],求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,0),若函數(shù)f(x)的圖象上存在兩點B、C到點A的距離相等,則稱該函數(shù)f(x)為“點距函數(shù)”,給定下列三個函數(shù):①y=﹣x+2;② ;③y=x+1.其中,“點距函數(shù)”的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線l的參數(shù)方程為 (t為參數(shù),0<α<π),曲線C的極坐標方程為ρsin2θ=4cosθ. (Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設直線l與曲線C相交于A、B兩點,當α變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,D為BC的中點,∠BAD+∠C≥90°. (Ⅰ)求證:sin2C≤sin2B;
(Ⅱ)若cos∠BAD=﹣ ,AB=2,AD=3,求AC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com